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Abstract
We perform the so-called rigid lid limit on different
shallow water models such as the abcd Bousssinesq
systems or the Green–Naghdi equations. To do so, we
consider an appropriate nondimensionalization of these
models where two small parameters are involved: the
shallowness parameter 𝜇 and a parameter 𝜖 which can
be interpreted as a Froude number. When the param-
eter 𝜖 tends to zero, the surface deformation formally
goes to the rest state, hence the name rigid lid limit. We
carefully study this limit for different topologies.We also
provide rates of convergencewith respect to 𝜖 and careful
attention is given to the dependence on the shallowness
parameter 𝜇.

KEYWORDS
dispersive estimates, singular limit, shallow water, water waves

1 INTRODUCTION

We consider shallow water asymptotic models of the water wave equations that can be written
under the general form

𝜖𝜕𝑡𝐔 + 𝜇𝐔 + 𝜖𝑄𝜇(𝐔) = 0.

Here 𝑡 ∈ ℝ+, 𝑥 ∈ ℝ orℝ2,𝐔 = (𝜁,𝐕) ∈ ℝ2 orℝ3, 1 + 𝜖𝜁 is the nondimensionalized water depth,
𝐕 is the nondimensionalized horizontal velocity of the fluid, 𝜇 is a linear operator that tends
to the wave operator as 𝜇 → 0 and 𝑄𝜇 a nonlinear operator. The nondimensionalized parame-
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ter 𝜇 measures the shallowness of the flow. The nondimensionalized parameter 𝜖 compares the
amplitude of the water waves to the water depth and can also be seen as a comparison between
the typical horizontal velocity of the fluid and the typical velocity of the water waves. Note that
the nondimensionalized parameter 𝜖 appears in front of 𝜕𝑡 since the characteristic time used to
nondimensionalize the time variable is the typical timescale of the fluid (and not the one of water
waves). We assume in the following that 𝜖 and 𝜇 both belong to (0,1].
The goal of this paper is to perform the limit 𝜖 → 0 and understand how the parameter 𝜇 inter-

fereswith this convergence. In our framework, the velocity component𝐕 tends to a solution of the
incompressible Euler equations whereas the free surface 𝜁 tends to 0 thus the terminology rigid
lid limit. Actually, the rigid lid approximation is a common assumption in the oceanographical lit-
erature and can be interpreted as a low Froude number assumption (ocean currents travel slower
than water waves). We refer for instance to Refs. 1–3 where existence and stability of nearshore
shear waves that are not gravity waves were discussed, and such an assumption is used. In the
same direction, Camassa et al.4,5 derive from the free surface Euler equations two asymptotic
models called nowadays the lake equations and the great lake equations where again a rigid lid
approximation is considered. In our setting, the lake equations are obtained by neglecting terms
of order (𝜇) and then performing the limit 𝜖 → 0, whereas the great lake equations are derived
by neglecting terms of order (𝜇2) and then performing the limit 𝜖 → 0. A full justification of
the lake equations was obtained in Ref. 6 (see also Ref. 7). We emphasize that all the previously
cited works consider a nonflat bathymetry. That is not the case in this paper where the seabed is
assumed to be flat. Finally, we also refer to Ref. 8, where a first study of the rigid lid limit on the
full irrotational water wave equations was performed. The proof is, however, based on weighted
dispersive estimates that are not well suited for the local well-posedness on large time, and the
rates of convergence obtained are not optimal. Using the strategy provided in this paper, one can
improve8 by obtaining rates of convergence as those established, for instance, in Section 5 for the
irrotational Green–Naghdi equations.
We carefully study if the convergence is strong, meaning in 𝐿∞(0, 𝑇; 𝐿2(ℝ𝑛)) for some 𝑇 > 0

independent of 𝜖. If not, we provide the default of strong convergence, meaning a corrector 𝐔̂𝜖

such that𝐔− 𝐔̂𝜖 strongly converges. We also get convergence in 𝐿𝑞(0, 𝑇; 𝐿∞(ℝ𝑛)) for some 𝑞 ≥ 2

(weak convergence) and in 𝐿2(0, 𝑇; 𝐿2
𝑙𝑜𝑐

(ℝ𝑛)) (convergence of the local energy).* All our con-
vergence results are given with rates of convergence in terms of 𝜖 that crucially depend on the
shallowness parameter 𝜇 and the function space we consider. Our strategy is the following. We
assume bounds on appropriate 𝐻𝑠-norms of 𝐔 that are uniform with respect to 𝜖 on an exis-
tence time,† that is independent of 𝜖. Using Duhamel’s formulation, one can then use Strichartz
estimates to get 𝐿𝑞𝑡 𝐿

𝑟
𝑥 bounds and Morawetz-type estimates to obtain 𝐿2𝑡 𝐿

2
𝑙𝑜𝑐

controls.
Our problem shares some similarities with the incompressible limit (low Mach number limit)

of the compressible Euler equations defined in ℝ𝑛:

⎧⎪⎨⎪⎩
𝜖𝜕𝑡𝑐 + 𝜖𝐕 ⋅ ∇𝑐 +

𝛾 − 1

2
(1 + 𝜖𝑐)∇ ⋅ 𝐕 = 0,

𝜖𝜕𝑡𝐕 + 𝜖(𝐕 ⋅ ∇)𝐕 +
𝛾 − 1

2
(1 + 𝜖𝑐)∇𝑐 = 0.

* (Note that this kind of convergence was also obtained for the rigid lid limit of the shallow water equations over a nonflat
bottom in Ref. 6 (without any rate of convergence); see Theorem 2.5 and Subsection 4.2.2 inside.)
† (Such bounds and existence time can be obtained from energy estimates when one prove the local well-posedness; see,
for instance, Subsections 2.1 or 3.1 below.)
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3 of 35 MELINAND

In that case, 1 + 𝜖𝑐 is the rescaled speed of the sound, 𝐕 is the velocity of the fluid, 𝛾 > 1 is the
adiabatic exponent, and 𝜖 is the Mach number. The limit 𝜖 → 0 was studied by several authors
and we refer, for instance, to Refs. 9–14. It is now well understood that the acoustic component
of (𝑐, 𝐕) is of dispersive type and weakly converges to 0 since its propagation speed is of size 1

𝜖
and, when the initial datum only contains incompressible terms, the convergence is strong. Such
a phenomenon also appears for the rigid lid limit.
Finally, we mention several works15–18 where dispersive estimates similar to ours are used to

study the long-time existence problem on Boussinesq and Boussinesq-type systems.
We organize the paper as follows. Sections 2 and 3 are devoted to the study of the rigid

lid limit on the classical Boussinesq system (also called the Amick–Schonbek system in the
literature), respectively, in one and two dimensions. We explain in detail our strategy. In Sec-
tion 4, we consider other Boussinesq systems. Finally, in Section 5, we perform the rigid lid limit
on the Green–Naghdi equations. Appendix A recalls some basic facts about Littlewood–Paley
decomposition, and Appendix B gathers different useful Fourier multiplier estimates. Finally, we
provide, in Appendix C, general dispersive estimates on linear dispersive equations with radial
nonhomogeneous phases.

Notations

∙ If 𝑓 is a Schwartz class function defined on ℝ𝑛, we define 𝑓 or 𝑓 as the Fourier transform of
𝑓 by

𝑓(𝜉) =
1

(2𝜋)
𝑛

2
∫
ℝ𝑛

e−i𝑥⋅𝜉𝑓(𝑥)𝑑𝑥.

∙ If𝑚 is a smooth function that is at most polynomial at infinity, we define the Fourier multiplier
𝑚(𝐷) as, for any Schwartz class function 𝑓,

𝑚(𝐷)𝑓 = −1(𝑚(𝜉)𝑓(𝜉)).

Note that the Laplace operator verifies Δ = −|𝐷|2.
∙ If 𝑓 is a function defined on ℝ𝑛, we denote by ‖𝑓‖𝐿𝑝 the 𝐿𝑝(ℝ𝑛) norm of 𝑓.
∙ If 𝑝 ∈ [1,∞], we denote 𝑝′ =

𝑝

𝑝−1
.

∙ If𝑇 > 0 and𝐺 ∶ (𝑡, 𝑥) ∈ [0, 𝑇] × ℝ𝑛 → 𝐺(𝑡, 𝑥) ∈ ℝ, the norm ‖𝐺‖𝐿𝑞𝑡 𝐿𝑟𝑥 corresponds to the norm
of the space 𝐿𝑞((0, 𝑇); 𝐿𝑟(ℝ𝑛)).

∙ If 𝑆 ∶ 𝐸 → 𝐹 is a linear bounded operator with 𝐸, 𝐹 two Banach spaces, we denote by 𝑆∗ its
adjoint.

2 THE CLASSICAL 1D BOUSSINESQ SYSTEM

In the one-dimensional case, the classical Boussinesq system reads as

⎧⎪⎨⎪⎩
𝜖𝜕𝑡𝜁 + 𝜕𝑥([1 + 𝜖𝜁]𝑉) = 0,

𝜖
(
1 −

𝜇

3
𝜕2𝑥

)
𝜕𝑡𝑉 + 𝜕𝑥𝜁 + 𝜖𝑉𝜕𝑥𝑉 = 0.

(1)
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MELINAND 4 of 35

Denoting by𝐔 = (𝜁, 𝑉)𝑇 ∈ ℝ2, we get the following system:

𝜖𝜕𝑡𝐔 + 𝐴(𝜕𝑥)𝐔 = 𝜖𝐹(𝐔) (2)

where

𝐴(𝜕𝑥) =

⎛⎜⎜⎜⎝
0 𝜕𝑥(

1 −
𝜇

3
𝜕2𝑥

)−1
𝜕𝑥 0

⎞⎟⎟⎟⎠ and 𝐹(𝐔) = −

⎛⎜⎜⎜⎝
𝜕𝑥(𝜁𝑉)

1

2

(
1 −

𝜇

3
𝜕2𝑥

)−1
𝜕𝑥(𝑉

2)

⎞⎟⎟⎟⎠ .
Note that

exp(𝑡𝐴(𝜕𝑥)) =

⎛⎜⎜⎜⎜⎜⎜⎝

cos

(
𝑡

𝐷√
1+

𝜇

3
𝐷2

)
i
√

1 +
𝜇

3
𝐷2 sin

(
𝑡

𝐷√
1+

𝜇

3
𝐷2

)

i√
1+

𝜇

3
𝐷2

sin

(
𝑡

𝐷√
1+

𝜇

3
𝐷2

)
cos

(
𝑡

𝐷√
1+

𝜇

3
𝐷2

)
⎞⎟⎟⎟⎟⎟⎟⎠
. (3)

We state the main result of this section.

Theorem 1. Let 𝑀 > 0, 𝑇 > 0, 𝜖 ∈ (0, 1] and 𝜇 ∈ (0, 1]. Let (𝜁, 𝑉) ∈ ([0, 𝑇]; (𝐻3 × 𝐻3)(ℝ)) a
solution of (1) with initial datum (𝜁0, 𝑉0) such that

‖(𝜁, 𝑉)‖𝐿∞(0,𝑇;𝐻3(ℝ)×𝐻3(ℝ)) ≤ 𝑀.

There exists a constant𝐶 > 0 independent of𝑀,𝑇, 𝜖 and𝜇 such that for any 𝑞, 𝑟 ≥ 2with 1

𝑞
+

1

2𝑟
=

1

4

and any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

1

3𝑟
=

1

6

‖‖‖‖‖
(
𝜁

𝑉

)
− e

−
𝑡

𝜖
𝐴(𝜕𝑥)

(
𝜁0
𝑉0

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(
𝜖

𝜇

) 1

4
+

1

𝑞

𝑀2𝑇
3

4 𝐶,

‖‖‖‖‖
(
𝜁

𝑉

)
− e

−
𝑡

𝜖
𝐴(𝜕𝑥)

(
𝜁0
𝑉0

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(
𝜖

𝜇

) 1

6
+

1

𝑞

𝑀2𝑇
5

6 𝐶,

‖‖‖‖‖
(
𝜁

𝑉

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(
𝜖

𝜇

) 1

𝑞
⎛⎜⎜⎝𝑀 +𝑀2𝑇

5

6

(
𝜖

𝜇

) 1

6
⎞⎟⎟⎠𝐶,

sup
𝑥0∈ℝ

‖‖‖‖‖e−(𝑥−𝑥0)2
(
𝜁

𝑉

)‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ))

≤ 𝜖
1

2 (𝑀 +𝑀2𝑇)𝐶.

Remark 1. Several remarks are in order. We first note that (𝜁, 𝑉) weakly converges to 0 as
𝜖 → 0. However (𝜁, 𝑉) does not strongly converge to 0, meaning in 𝐿∞(0, 𝑇; 𝐿2(ℝ)), except if
(𝜁0, 𝑉0) = (0, 0). The first two estimates provide the default of strong convergence. The first three
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5 of 35 MELINAND

estimates are not uniformwith respect to 𝜇 → 0. The fourth estimate provides the convergence to
0 in 𝐿2𝑡 (0, 𝑇;𝐻

𝑠
𝑙𝑜𝑐

(ℝ)) for any 𝑠 ∈ [0, 3) and is uniform with respect to 𝜇 → 0. That corresponds to
the decay to 0 of the local energy.

Remark 2. Note that if 𝜖 ∼ 𝜇 as in Refs. 19, 20 or when 𝜇 = (𝜖), the first two estimates do not
provide a convergence result as 𝜖 → 0. It is known in that case that nonlinear termsmust be taken
into account and that asymptotic models like a system of decoupling KdV equations or a system
of decoupling BBM equations become relevant.
A proof of such a result can be adapted from Ref. 20 or Ref. [21, Section 7.1].

2.1 Local existence

In this section, we provide a local well-posedness result of (1) on an existence time independent
of 𝜖, 𝜇 ∈ (0, 1]. We introduce the functional space

𝑋3
𝜇(ℝ) ∶= {(𝜁, 𝑉) ∈ (𝐻3 × 𝐻4)(ℝ), ‖(𝜁, 𝑉)‖𝑋3

𝜇
∶= ‖𝜁‖𝐻3 + ‖𝑉‖𝐻3 +

√
𝜇‖𝜕𝑥𝑉‖𝐻3 < ∞}.

Proposition 1. Let ℎ0 > 0,𝐴 > 0, 𝜖 ∈ (0, 1] and 𝜇 ∈ (0, 1]. Let (𝜁0, 𝑉0) ∈ 𝑋3
𝜇(ℝ)with 1 + 𝜖𝜁0 ≥ ℎ0

and‖(𝜁0, 𝑉0)‖𝑋3
𝜇
≤ 𝐴. There exists a time𝑇 > 0 that only depends on𝐴 andℎ0 andaunique solution

(𝜁, 𝑉) ∈ ([0, 𝑇]; 𝑋3
𝜇(ℝ)) of (1) with initial datum (𝜁0, 𝑉0). Furthermore, there exists a constant𝑀 >

0 depending only on 𝐴 and ℎ0 such that

‖(𝜁, 𝑉)‖𝐿∞(0,𝑇;𝑋3
𝜇)

≤ 𝑀.

The proof is similar to the proofs of Ref. [22, Proposition 2.15] or Ref. [23, Theorem 1]. The key
point is that System (1) under the assumption that (1 + 𝜖𝜁) ≥ ℎ0

2
has a symmetrizer

𝑆(𝑈) =

(
1 0

0 (1 + 𝜖𝜁) −
𝜇

3
𝜕𝑥((1 + 𝜖𝜁)𝜕𝑥⋅)

)

and corresponding energies

𝑘(𝑈) =
(
𝑆(𝑈)𝜕𝑘𝑥𝑈, 𝜕𝑘𝑥𝑈

)
2

that allow to control the 𝑋3
𝜇(ℝ)-norm.

2.2 Dispersive estimates

The phase 𝑔 ∶= 𝑟 ↦
𝑟√
1+

𝑟2

3

is smooth, and

𝑔′ > 0, 𝑔′′ < 0 on ℝ+
∗ , 𝑔′(𝑟) − 1 ∼

𝑟∼0
−
𝑟2

2
, 𝑔′′(𝑟) ∼

𝑟∼0
−𝑟, 𝑔′(𝑟) ∼

𝑟∼+∞
3

3

2 𝑟−3, 𝑔′′(𝑟) ∼
𝑟∼+∞

3
5

2 𝑟−4. (4)
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MELINAND 6 of 35

Thanks to Appendix C, one can prove several dispersive estimates. In the following, 𝜒 is a smooth
compactly supported function that is equal to 1 near 0.
First, using Lemma C1,‡ there exists a constant 𝐶 > 0 such that for any Schwartz class function

𝑓, any 𝑡 ≠ 0, any 𝜇 ∈ (0, 1] and any 𝜖 ∈ (0, 1]

‖‖‖‖‖‖‖e
±

𝑡

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2
𝜒(
√
𝜇|𝐷|)sgn(𝐷)|𝐷| 12 𝑓‖‖‖‖‖‖‖𝐿∞𝑥

≤ 𝐶

𝜇
1

2

(
𝜖|𝑡|
) 1

2 ‖‖‖𝜒(√𝜇|𝐷|)𝑓‖‖‖𝐿1 ,
‖‖‖‖‖‖‖e

±
𝑡

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2
(1 − 𝜒(

√
𝜇|𝐷|))𝑓‖‖‖‖‖‖‖𝐿∞𝑥

≤ 𝐶

𝜇
1

2

(
𝜖|𝑡|
) 1

2 ‖(1 − 𝜒(
√
𝜇|𝐷|))(√𝜇|𝐷|)2𝑓‖𝐿1 .

Then corresponding Strichartz estimates can be obtained: for any (𝑞, 𝑟) ∈ {(4,∞), (∞, 2)} and any
functions 𝑓 and 𝐺 are smooth enough

‖‖‖‖‖‖‖e
±

𝑡

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2
𝜕𝑥𝑓

‖‖‖‖‖‖‖𝐿𝑞𝑡 𝐿𝑟𝑥
≲

(
𝜖

𝜇

) 1

2

(
1

2
−

1

𝑟

)
‖|𝐷| 34+ 1

2𝑟 𝜒(
√
𝜇|𝐷|)𝑓‖𝐿2

+

(
𝜖

𝜇

) 1

2

(
1

2
−

1

𝑟

)‖‖‖‖‖(1 − 𝜒(
√
𝜇|𝐷|))(√𝜇|𝐷|)2( 1

2
−

1

𝑟

)
𝜕𝑥𝑓

‖‖‖‖‖𝐿2‖‖‖‖‖‖‖∫
𝑡

0

e

±
(𝑡−𝑠)

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2
𝜕𝑥𝐺(𝑠)𝑑𝑠

‖‖‖‖‖‖‖𝐿𝑞𝑡 𝐿𝑟𝑥
≲

(
𝜖

𝜇

) 1

2
(1−

1

𝑟
)‖|𝐷| 12+ 1

2𝑟 𝜒(
√
𝜇|𝐷|)𝐺‖

𝐿

4
3
𝑡 𝐿1𝑥

+

(
𝜖

𝜇

) 1

2
(1−

1

𝑟
)‖‖‖‖(1 − 𝜒(

√
𝜇|𝐷|))(√𝜇|𝐷|)2(1− 1

𝑟
)
𝜕𝑥𝐺

‖‖‖‖𝐿 4
3
𝑡 𝐿1𝑥

.

(5)

One can prove such bounds by applying a 𝑇∗𝑇 argument§ on the following operators that are both
defined from 𝐿

𝑞′

𝑡 (ℝ, 𝐿𝑟
′

𝑥 (ℝ)) to 𝐿2(ℝ)

𝑇𝐿𝐹(𝐹) = ∫
ℝ

e

∓
𝑠

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2
𝜒(
√
𝜇|𝐷|) 𝜕𝑥|𝐷| 34+ 1

2𝑟

𝐹(𝑠)𝑑𝑠,

𝑇𝐻𝐹(𝐹) = ∫
ℝ

e

∓
𝑠

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2 1 − 𝜒(

√
𝜇|𝐷|)

(
√
𝜇|𝐷|)1− 2

𝑟

𝐹(𝑠)𝑑𝑠.

‡with 𝛽 = 1, 𝑠 =
1

2
, 𝛼 = −4, 𝑙 = 2.

§ in the spirit of Ref. [24, Lemma 2.1].
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7 of 35 MELINAND

In a similar way, one can also get from LemmaC1¶ together with Lemma B1 that for any functions
𝑓 and 𝐹 are smooth enough

‖‖‖‖‖‖‖e
±

𝑡

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2
𝑓

‖‖‖‖‖‖‖𝐿∞ ≲
𝐶

𝜇
1

3

(
𝜖|𝑡|
) 1

3 ‖(1 + 𝜇𝐷2)
5

6 𝑓‖𝐿1
and corresponding Strichartz estimates can be obtained from a 𝑇∗𝑇 argument: for any (𝑞, 𝑟) ∈

{(6,∞), (∞, 2)}

‖‖‖‖‖‖‖e
±

𝑡

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2
𝑓

‖‖‖‖‖‖‖𝐿𝑞𝑡 𝐿𝑟𝑥
≲

(
𝜖

𝜇

) 1

3

(
1

2
−

1

𝑟

)‖‖‖‖‖(1 + 𝜇𝐷2)
5

6

(
1

2
−

1

𝑟

)
𝑓
‖‖‖‖‖𝐿2 (6)

‖‖‖‖‖‖‖∫
𝑡

0

e

±
(𝑡−𝑠)

𝜖

𝜕𝑥√
1+

𝜇
3
𝐷2
𝐹(𝑠)𝑑𝑠

‖‖‖‖‖‖‖𝐿𝑞𝑡 𝐿𝑟𝑥
≲

(
𝜖

𝜇

) 1

3

(
1−

1

𝑟

)‖‖‖‖‖(1 + 𝜇𝐷2)
5

6

(
1−

1

𝑟

)
𝐹
‖‖‖‖‖𝐿 6

5
𝑡 𝐿1𝑥

. (7)

2.3 Proof of Theorem 1

From Duhamel’s principle on (2)

(
𝜁

𝑉

)
(𝑡) − e

−
𝑡

𝜖
𝐴(𝜕𝑥)

(
𝜁0
𝑉0

)
= ∫

𝑡

0

exp(
𝜏 − 𝑡

𝜖
𝐴(𝜕𝑥))𝐹

((
𝜁

𝑉

)
(𝜏)

)
𝑑𝜏.

Then from (3) and since 𝐹 is a derivative we can use (5) so that for any (𝑞, 𝑟) ∈ {(4,∞), (∞, 2)}

‖‖‖‖‖∫
𝑡

0

exp(
𝜏 − 𝑡

𝜖
𝐴(𝜕𝑥))𝐹

((
𝜁

𝑉

)
(𝜏)

)
𝑑𝜏
‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≲

(
𝜖

𝜇

) 1

4
+

1

𝑞

(𝐴𝐿𝐹 + 𝐴𝐻𝐹)

where

𝐴𝐿𝐹 =
‖‖‖‖|𝐷| 12+ 1

2𝑟 (𝜁𝑉)
‖‖‖‖𝐿 4

3
𝑡 (0,𝑇;𝐿1𝑥)

+

‖‖‖‖‖‖‖‖
|𝐷| 12+ 1

2𝑟√
1 +

𝜇

3
|𝐷|2

(
𝑉2
)‖‖‖‖‖‖‖‖𝐿 4

3
𝑡 (0,𝑇;𝐿1𝑥)

+

‖‖‖‖‖‖‖‖
|𝐷| 12+ 1

2𝑟√
1 +

𝜇

3
|𝐷|2 (𝜁𝑉)

‖‖‖‖‖‖‖‖𝐿 4
3
𝑡 (0,𝑇;𝐿1𝑥)

+

‖‖‖‖‖‖
|𝐷| 12+ 1

2𝑟

1 +
𝜇

3
|𝐷|2 (𝑉2

)‖‖‖‖‖‖𝐿 4
3
𝑡 (0,𝑇;𝐿1𝑥)

¶ with 𝛽 = 1, 𝑠 = 0, 𝛼 = −4, 𝑙 = 3.
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MELINAND 8 of 35

and

𝐴𝐻𝐹 =
‖‖‖‖‖(√𝜇|𝐷|)2(1− 1

𝑟

)
𝜕𝑥(𝜁𝑉)

‖‖‖‖‖𝐿 4
3
𝑡 (0,𝑇;𝐿1𝑥)

+

‖‖‖‖‖‖‖‖
(
√
𝜇|𝐷|)2(1− 1

𝑟

)
√

1 +
𝜇

3
|𝐷|2 𝜕𝑥

(
𝑉2
)‖‖‖‖‖‖‖‖𝐿 4

3
𝑡 (0,𝑇;𝐿1𝑥)

+

‖‖‖‖‖‖‖‖
(
√
𝜇|𝐷|)2(1− 1

𝑟

)
√

1 +
𝜇

3
|𝐷|2 𝜕𝑥(𝜁𝑉)

‖‖‖‖‖‖‖‖𝐿 4
3
𝑡 (0,𝑇;𝐿1𝑥)

+

‖‖‖‖‖‖‖‖
(
√
𝜇|𝐷|)2(1− 1

𝑟

)
1 +

𝜇

3
|𝐷|2 𝜕𝑥

(
𝑉2
)‖‖‖‖‖‖‖‖𝐿 4

3
𝑡 (0,𝑇;𝐿1𝑥)

.

Lemmas B1 and B4 provide

𝐴𝐿𝐹 + 𝐴𝐻𝐹 ≲ ‖‖𝜁‖𝐻3
𝑥
‖𝑉‖𝐻3

𝑥
‖
𝐿

4
3
𝑡 (0,𝑇)

+ ‖‖𝑉‖2
𝐻3

𝑥

‖
𝐿

4
3
𝑡 (0,𝑇)

≲ 𝑇
3

4𝑀2.

We then get the first boundwhen (𝑞, 𝑟) ∈ {(4,∞), (∞, 2)} and the other cases follow fromHölder’s
inequality. The second bound follows the same way using instead (6) and (7). Note that since the
initial datum is not necessarily a derivative one cannot use the homogeneous version of (5), hence
a weaker rate of convergence in that case. Finally, the third bound follows from Morawetz-type
estimates established in Proposition 4.

3 THE CLASSICAL 2D BOUSSINESQ SYSTEM

The two-dimensional classical Boussinesq system reads as

⎧⎪⎨⎪⎩
𝜖𝜕𝑡𝜁 + ∇ ⋅ ([1 + 𝜖𝜁]𝐕) = 0,

𝜖
(
1 −

𝜇

3
∇∇⋅

)
𝜕𝑡𝐕 + ∇𝜁 + 𝜖(𝐕 ⋅ ∇)𝐕 = 0.

(8)

Taking the divergence of the second equation and denoting by𝐔 ∶= (𝜁,∇ ⋅ 𝐕)𝑇 ∈ ℝ2, we get the
following system:

𝜖𝜕𝑡𝐔 + 𝐴(𝐷)𝐔 = 𝜖𝐹(𝜁, 𝐕),

where

𝐴(𝐷) =
⎛⎜⎜⎝

0 1(
1 −

𝜇

3
Δ
)−1

Δ 0

⎞⎟⎟⎠ and 𝐹(𝜁, 𝐕) = −
⎛⎜⎜⎝

∇ ⋅ (𝜁𝐕)(
1 −

𝜇

3
Δ
)−1

∇ ⋅ ((𝐕 ⋅ ∇)𝐕)

⎞⎟⎟⎠ .
Note that

exp(𝑡𝐴(𝐷)) =

⎛⎜⎜⎜⎜⎜⎝
cos

(
𝑡

|𝐷|√
1+

𝜇

3
|𝐷|2
) √

1+
𝜇

3
|𝐷|2|𝐷| sin

(
𝑡

|𝐷|√
1+

𝜇

3
|𝐷|2
)

−
|𝐷|√

1+
𝜇

3
|𝐷|2 sin

(
𝑡

|𝐷|√
1+

𝜇

3
|𝐷|2
)

cos

(
𝑡

|𝐷|√
1+

𝜇

3
|𝐷|2
)

⎞⎟⎟⎟⎟⎟⎠
.
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9 of 35 MELINAND

As in the one-dimensional (1D) case, we expect (𝜁, ∇ ⋅ 𝐕) to weakly converge to 0. We, however,
have no control over the rotational component of 𝐕. Applying the operator ∇⟂⋅ to the second
equation and denoting by 𝜔 ∶= ∇⟂ ⋅ 𝐕 we get the following equation:

𝜕𝑡𝜔 + (𝐕 ⋅ ∇)𝜔 + (∇ ⋅ 𝐕)𝜔 = 0.

Since 𝐕 is a vector field on ℝ2 it has a Hodge–Weyl decomposition

𝐕 = ∇
∇

Δ
⋅ 𝐕 + ∇⟂∇

⟂

Δ
⋅ 𝐕.

Therefore we expect 𝜔 to converge to 𝜔̃ as 𝜖 → 0, where

𝜕𝑡𝜔̃ +

(
∇⟂∇

⟂

Δ
𝜔̃ ⋅ ∇

)
𝜔̃ = 0.

The previous equation is the vorticity formulation of the incompressible Euler equation

𝜕𝑡𝐕̃ + (𝐕̃ ⋅ ∇)𝐕̃ + ∇𝑃 = 0, ∇ ⋅ 𝐕̃ = 0 (9)

with 𝜔̃ = ∇⟂ ⋅ 𝐕̃. One can now state the main results of this section.

Theorem 2. Let 𝑀 > 0, 𝑇 > 0, 𝜖 ∈ (0, 1] and 𝜇 ∈ (0, 1]. Let (𝜁, 𝐕) ∈ ([0, 𝑇]; (𝐻6 × 𝐻6)(ℝ2))

be a solution of (8) with initial datum (𝜁0, 𝐕0) and 𝐕̃ ∈ ([0, 𝑇]; 𝐿2(ℝ2)) be a solution of the
incompressible Euler equation (9) with initial datum∇⟂∇⟂

Δ
⋅ 𝐕0 such that

‖(𝜁, 𝐕)‖𝐿∞(0,𝑇;(𝐻6×𝐻6)(ℝ2)) + ‖𝐕̃‖𝐿∞(0,𝑇;𝐿2(ℝ2)) ≤ 𝑀.

There exists a constant𝐶 > 0 independent of𝑀,𝑇, 𝜖, and𝜇 such that for any 𝑞, 𝑟 ≥ 2with 1

𝑞
+

1

𝑟
=

1

2 ‖‖‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(
−
𝑡

𝜖
𝐴(𝐷)

)( 𝜁0
∇ ⋅ 𝐕0

)‖‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤
(

𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)) 1

2
+

1

𝑞

𝑀2𝑇
1

2 𝐶

+
𝜖√
𝜇
𝑀2𝑇𝐶,

‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤
(

𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)) 1

𝑞
⎛⎜⎜⎜⎝𝑀 +𝑀2

(
𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)
𝑇

) 1

2
⎞⎟⎟⎟⎠𝐶

+
𝜖√
𝜇
(𝑀 +𝑀2𝑇)𝐶,

‖‖‖‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃

‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≤
(

𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)) 1

2
⎛⎜⎜⎜⎝𝑀 +𝑀2

(
𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)
𝑇

) 1

2
⎞⎟⎟⎟⎠𝑀
√
𝑇e𝐶𝑀𝑇𝐶

+
𝜖√
𝜇
(𝑀 +𝑀2𝑇)𝑀

√
𝑇e𝐶𝑀𝑇𝐶.
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MELINAND 10 of 35

Remark 3. (𝜁,
∇

Δ
∇ ⋅ 𝐕) weakly converges to 0 as 𝜖 → 0, whereas ∇⟂

Δ
∇⟂ ⋅ 𝐕 strongly converges to

a solution of the incompressible Euler equation. Therefore, 𝐕 strongly converges to a solution of
the incompressible Euler equation if and only if (𝜁0, ∇ ⋅ 𝐕0) = (0, 0). The default of strong conver-
gence is exhibited through the first bound of the theorem. Finally, unlike the 1D case, if 𝜖 ∼ 𝜇 as
in Refs. 19 and 20, the theorem provides a convergence result as 𝜖 → 0.

The previous theorem does not provide uniform bounds with respect to 𝜇 → 0. It is the purpose
of the following theorem.

Theorem 3. Let 𝑀 > 0, 𝑇 > 0, 𝜖 ∈ (0, 1], and 𝜇 ∈ (0, 1]. Let (𝜁, 𝐕) ∈ ([0, 𝑇]; (𝐻6 × 𝐻6)(ℝ2))

be a solution of (8) with initial datum (𝜁0, 𝐕0), and 𝐕̃ ∈ ([0, 𝑇]; 𝐿2(ℝ2)) be a solution of the
incompressible Euler equation (9) with initial datum∇⟂∇⟂

Δ
⋅ 𝐕0 such that

‖(𝜁, 𝐕)‖𝐿∞(0,𝑇;(𝐻6×𝐻6)(ℝ2)) + ‖𝐕̃‖𝐿∞(0,𝑇;𝐿2(ℝ2)) ≤ 𝑀.

There exists a constant𝐶 > 0 independent of𝑀,𝑇, 𝜖, and𝜇 such that for any 𝑞, 𝑟 ≥ 2with 1

𝑞
+

1

2𝑟
=

1

4

‖‖‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(
−
𝑡

𝜖
𝐴(𝐷)

)( 𝜁0
∇ ⋅ 𝐕0

)‖‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤ 𝜖
1

4
+

1

𝑞 𝑀2𝑇
3

4 𝐶,

‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤ 𝜖
1

𝑞

(
𝑀 +𝑀2𝑇

3

4 𝜖
1

4

)
𝐶,

‖‖‖‖‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃

‖‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≤ 𝜖
1

4

(
𝑀 +𝑀2𝑇

3

4 𝜖
1

4

)
𝑀𝑇

3

4 e𝐶𝑀𝑇𝐶,

sup
𝑥0∈ℝ2

‖‖‖‖‖‖e−(𝑥−𝑥0)
2

(
𝜁

∇
∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ2))

≤ 𝜖
1

2 (𝑀 +𝑀2𝑇)𝐶.

Remark 4. The last two estimates provide the convergence in 𝐿2𝑡 (0, 𝑇; 𝐿
2
𝑙𝑜𝑐

(ℝ2)). We then get
the convergence of the local energy to the local energy of the corresponding solution of the
incompressible Euler equation. If furthermore 𝐕̃ ∈ ([0, 𝑇];𝐻6(ℝ2)), then the convergence is in
𝐿2𝑡 (0, 𝑇;𝐻

𝑠
𝑙𝑜𝑐

(ℝ2)) for any 𝑠 ∈ [0, 6).

3.1 Local existence

In this section, we provide a local well-posedness result of (8) on an existence time independent
of 𝜖, 𝜇 ∈ (0, 1]. Let 𝑘 ∈ ℕ with 𝑘 ≥ 3. We introduce the functional space

𝑋𝑘
𝜇(ℝ

2) ∶=
{
(𝜁, 𝑉) ∈ (𝐻𝑘 × 𝐻𝑘)(ℝ2), ‖(𝜁, 𝑉)‖𝑋𝑘

𝜇
∶= ‖𝜁‖𝐻𝑘 + ‖𝑉‖𝐻𝑘 +

√
𝜇‖∇ ⋅ 𝑉‖𝐻𝑘 < ∞

}
.
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11 of 35 MELINAND

Proposition 2. Let 𝑘 ∈ ℕ, 𝑘 ≥ 3. Letℎ0 > 0,𝐴 > 0, 𝜖 ∈ (0, 1], and𝜇 ∈ (0, 1]. Let (𝜁0, 𝑉0) ∈ 𝑋𝑘
𝜇(ℝ

2)

with 1 + 𝜖𝜁0 ≥ ℎ0 and ‖(𝜁0, 𝑉0)‖𝑋𝑘
𝜇
≤ 𝐴. There exists a time 𝑇 > 0 that only depends on 𝐴 and ℎ0

and a unique solution (𝜁, 𝑉) ∈ ([0, 𝑇]; 𝑋𝑘
𝜇(ℝ

2)) of (8) with initial datum (𝜁0, 𝑉0). Furthermore,
there exists a constant𝑀 > 0 depending only on 𝐴 and ℎ0 such that

‖(𝜁, 𝑉)‖𝐿∞(0,𝑇;𝑋𝑘
𝜇)

≤ 𝑀.

The proof is similar to the proofs of Ref. [21, Proposition 6.7] or Ref. [25, Proposition 2.7]. Again
the key point is that System (8) under the assumption that (1 + 𝜖𝜁) ≥ ℎ0

2
has a symmetrizer and

corresponding energies that allow to control the 𝑋𝑘
𝜇(ℝ

2) norm.

3.2 Dispersive estimates

From the properties (4) together with the fact |𝑔′′′(𝑟)| ≲ 𝑟−5, and thanks to Appendix C one can
prove several dispersive estimates.
First, using Lemma C2# together with Lemma B1, for any𝑚 ∈ ℕ there exists a constant 𝐶 > 0

such that for any Schwartz class function 𝑓, any 𝑡 ≠ 0, any 𝜇 ∈ (0, 1] and any 𝜖 ∈ (0, 1] we have

‖‖‖‖‖‖‖e
±i 𝑡

𝜖

|𝐷|√
1+

𝜇
3
𝐷2 ∇𝑚|𝐷|𝑚 𝑓

‖‖‖‖‖‖‖𝐿∞𝑥
≤ 𝐶√

𝜇

𝜖|𝑡|‖(1 + 𝜇|𝐷|2)2𝑓‖𝐿1 .
Then corresponding Strichartz estimates can be obtained from a𝑇∗𝑇 argument: for any 𝑞, 𝑟, 𝑞, 𝑟 ≥
2 such that 1

𝑞
+

1

𝑟
=

1

2
, 1

𝑞
+

1

𝑟
=

1

2
with 𝑟, 𝑟 < ∞, any𝑚 ∈ ℕ, any 𝜖 ∈ (0, 1] and any 𝜇 ∈ (0, 1]

‖‖‖‖‖‖‖e
±i 𝑡

𝜖

|𝐷|√
1+

𝜇
3
𝐷2 ∇𝑚|𝐷|𝑚 𝑓

‖‖‖‖‖‖‖𝐿𝑞𝑡 𝐿𝑟𝑥
≲

(
𝜖√
𝜇

) 1

2
−

1

𝑟 ‖(1 + 𝜇|𝐷|2)2( 1

2
−

1

𝑟

)
𝑓‖𝐿2

‖‖‖‖‖‖‖∫
𝑡

0

e

±i (𝑡−𝑠)
𝜖

|𝐷|√
1+

𝜇
3
𝐷2 ∇𝑚|𝐷|𝑚𝐹(𝑠)𝑑𝑠

‖‖‖‖‖‖‖𝐿𝑞𝑡 𝐿𝑟𝑥
≲

(
𝜖√
𝜇

)1−
1

𝑟
−

1

𝑟 ‖(1 + 𝜇|𝐷|2)2(1− 1

𝑟
−

1

𝑟
)
𝐹‖

𝐿
𝑞′

𝑡 𝐿𝑟
′
𝑥
.

(10)

It is well known that the previous estimates do not work at the endpoints (𝑞, 𝑟) = (2,∞) or (𝑞, 𝑟) =
(2,∞). We can, however, prove a logarithmic estimate for functions whose Fourier transform is
well localized. Such types of estimates were performed for the wave equation (Ref. 26 or Ref. [27,
Theorem 8.30]) or the Schrödinger equation.28 We provide in the following a general result.

Proposition 3. Let𝜒 be a smooth compactly supported function, 𝑔 a function defined onℝ∗
+, 𝛼 ∈ ℝ

and𝑚 ∈ ℕ. Assume there exists a constant 𝐶0 > 0 such that for any Schwartz class function 𝑓 and

# with 𝛽 = 1, 𝑠 = 𝛼 = −4.
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MELINAND 12 of 35

any 𝑡 ≠ 0 ‖‖‖‖e±i𝑡𝑔(|𝐷|) ∇𝑚|𝐷|𝑚 𝑓
‖‖‖‖𝐿∞𝑥 ≤ 𝐶0|𝑡| ‖(1 + |𝐷|2) 𝛼2 𝑓‖𝐿1 .

Then there exists a constant 𝐶 > 0 such that for any 𝜆 > 0, any 𝑇 > 0, any 𝜇 > 0 and any 𝜖 > 0 we
have

‖‖‖‖‖e±i
𝑡

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒(𝜆−1|𝐷|) ∇𝑚|𝐷|𝑚 𝑓
‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿∞𝑥 )

≤ 𝐶

(
𝜖√
𝜇

) 1

2

√√√√ln

(
1 +

√
𝜇

𝜖
𝜆2𝑇

)‖(1 + 𝜇|𝐷|2) 𝛼4 𝑓‖𝐿2
and if we define the operator𝐻 as

𝐻(𝐹) ∶= ∫
𝑡

0

e
±i (𝑡−𝑠)

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒(𝜆−1|𝐷|) ∇𝑚|𝐷|𝑚𝐹(𝑠, ⋅)𝑑𝑠

we have

‖𝐻(𝐹)‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥)
≤ 𝐶

(
𝜖√
𝜇

) 1

2

√√√√ln

(
1 +

√
𝜇

𝜖
𝜆2𝑇

)‖(1 + 𝜇|𝐷|2) 𝛼4 𝐹‖𝐿2𝑡 (0,𝑇;𝐿1𝑥),
‖𝐻(𝐹)‖𝐿2𝑡 (0,𝑇;𝐿∞𝑥 ) ≤ 𝐶

(
𝜖√
𝜇

) 1

2

√√√√ln

(
1 +

√
𝜇

𝜖
𝜆2𝑇

)‖(1 + 𝜇|𝐷|2) 𝛼4 𝐹‖𝐿1𝑡 (0,𝑇;𝐿2𝑥),
‖𝐻(𝐹)‖𝐿2𝑡 (0,𝑇;𝐿∞𝑥 ) ≤ 𝐶

𝜖√
𝜇
ln

(
1 +

√
𝜇

𝜖
𝜆2𝑇

)‖(1 + 𝜇|𝐷|2) 𝛼2 𝐹‖𝐿2𝑡 (0,𝑇;𝐿1𝑥).
Proof. By assumption and change of variables, we actually have for any 𝜇 ∈ (0, 1] and any 𝜖 ∈

(0, 1] ‖‖‖‖‖e±i
𝑡

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|) ∇𝑚|𝐷|𝑚 𝑓

‖‖‖‖‖𝐿∞𝑥 ≤ 𝜖√
𝜇

𝐶0|𝑡| ‖(1 + 𝜇|𝐷|2) 𝛼2 𝑓‖𝐿1 . (11)

We only prove the case𝑚 = 0 since themethodology is the same for the other cases.We introduce
the operator

𝑆 ∶ 𝐿2𝑡 (0, 𝑇, 𝐿
1
𝑥(ℝ

𝑛)) → 𝐿2(ℝ2)

𝐹 ↦ ∫
𝑇

0

e
∓i 𝑠

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 + 𝜇|𝐷|2)−𝛼

4 𝜒(𝜆−1|𝐷|)𝐹(𝑠)𝑑𝑠.
For any 𝑓 ∈ 𝐿2(ℝ2)

‖𝑆∗𝑓‖𝐿2𝑡 (0,𝑇;𝐿∞𝑥 ) ≤ sup‖𝐺‖
𝐿2𝑡 𝐿

1
𝑥
≤1

{
∫

𝑇

0

⟨
e
∓i 𝑡

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 + 𝜇|𝐷|2)−𝛼

4 𝜒(𝜆−1|𝐷|)𝑓, 𝐺(𝑡, ⋅)⟩
𝐿2𝑥×𝐿

2
𝑥

𝑑𝑡

}

≤ ‖𝑓‖𝐿2 sup‖𝐺‖
𝐿2𝑡 (0,𝑇;𝐿

1
𝑥)
≤1

𝐽𝐺
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13 of 35 MELINAND

where

𝐽𝐺 ∶=

{‖‖‖‖‖∫
𝑇

0

e
∓i 𝑡

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 + 𝜇|𝐷|2)−𝛼

4 𝜒(𝜆−1|𝐷|)𝐺(𝑡, ⋅)𝑑𝑡‖‖‖‖‖𝐿2𝑥
}

.

Then

𝐽2
𝐺
≤ ∫

[0,𝑇]2

‖‖‖‖‖e∓i
(𝑡−𝑠)

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 + 𝜇|𝐷|2)−𝛼

2 𝜒2(𝜆−1|𝐷|)𝐺(𝑡, ⋅)‖‖‖‖‖𝐿∞𝑥
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

∶=𝐾𝐺

‖𝐺(𝑠, ⋅)‖𝐿1𝑥𝑑𝑡𝑑𝑠

and using (11)

𝐾𝐺 ≲
𝜖√
𝜇

1|𝑡 − 𝑠|‖𝐺(𝑡, ⋅)‖𝐿1𝑥
whereas from Bernstein’s Lemma B2

𝐾𝐺 ≲ 𝜆
‖‖‖‖‖e∓i

(𝑡−𝑠)

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 + 𝜇|𝐷|2)−𝛼

2 𝜒(𝜆−1|𝐷|)𝐺(𝑡, ⋅)‖‖‖‖‖𝐿2𝑥
≲ 𝜆‖‖𝜒2(𝜆−1|𝐷|)𝐺(𝑡, ⋅)‖‖𝐿2𝑥 ≲ 𝜆2‖𝐺(𝑡, ⋅)‖𝐿1𝑥

so that

𝐽2
𝐺
≤ ∫

[0,𝑇]2

𝜆2

1 + 𝜆2
√
𝜇

𝜖
|𝑡 − 𝑠|‖𝐺(𝑡, ⋅)‖𝐿1𝑥‖𝐺(𝑠, ⋅)‖𝐿1𝑥𝑑𝑡𝑑𝑠.

The first bound follows from Schur’s test. Then for any (𝑎, 𝑏), (𝑎̃, 𝑏̃) ∈ {(2,∞), (∞, 2)}, we define
the operator 𝑅𝑎̃,𝑎

𝑅𝑎̃,𝑎 ∶ 𝐿𝑏̃
′

𝑡 (ℝ, 𝐿𝑎̃
′

𝑥 (ℝ2)) → 𝐿𝑏𝑡 (ℝ, 𝐿𝑎𝑥(ℝ
2))

𝐹 ↦ ∫
𝑡

0

e
±i (𝑡−𝑠)

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 + 𝜇|𝐷|2)−𝛼

4 𝜒(𝜆−1|𝐷|)𝐹(𝑠, ⋅)𝑑𝑠.
We note that

‖‖𝑅∞,2(𝐹)‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥)
= sup

𝑡∈[0,𝑇]

‖‖𝑆(𝟙(0,𝑡)𝐹)‖‖𝐿2𝑥
so that the second bound is followed by duality and the first bound. Furthermore, we notice that
𝑅2,∞ + 𝑅∗

∞,2 = 𝑆∗𝑆 where

𝑆 ∶ 𝐿1𝑡 (0, 𝑇, 𝐿
2
𝑥(ℝ

𝑛)) → 𝐿2(ℝ2)

𝐹 ↦ ∫
𝑇

0

e
∓i 𝑠

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

𝐹(𝑠)𝑑𝑠.
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MELINAND 14 of 35

The third estimate follows from the first and second estimates together with the fact that 𝑆 is
bounded since 𝑆∗ is bounded. Finally, denoting

𝐿𝐹 ∶=
‖‖‖‖‖∫

𝑡

0

e
±i (𝑡−𝑠)

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 + 𝜇|𝐷|2)−𝛼

2 𝜒(𝜆−1|𝐷|)𝐹(𝑠, ⋅)𝑑𝑠‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿∞𝑥 )

and proceeding similarly as for the bound on 𝐾𝐺 we get

𝐿𝐹 ≲

‖‖‖‖‖‖‖‖∫
𝑡

𝑠=0

𝜆2

1 + 𝜆2
√
𝜇

𝜖
|𝑡 − 𝑠|‖𝐹(𝑠, ⋅)‖𝐿1𝑥𝑑𝑠

‖‖‖‖‖‖‖‖𝐿2𝑡 (0,𝑇)
≲

√√√√√ sup
𝑡∈[0,𝑇]∫

𝑡

𝑠=0

𝜆2

1 + 𝜆2
√
𝜇

𝜖
|𝑡 − 𝑠|𝑑𝑠

√√√√√∫
𝑇

𝑡=0
∫

𝑡

𝑠=0

𝜆2

1 + 𝜆2
√
𝜇

𝜖
|𝑡 − 𝑠|‖𝐹(𝑠, ⋅)‖2𝐿1𝑥𝑑𝑠𝑑𝑡

and the fourth bound follows. □

Second, we get from Lemma C3(i)∥ together with Lemma B1 that if 𝜒 is a smooth compactly
supported that is equal to 1 near 0 and𝑚 ∈ ℕ

‖‖‖‖‖‖‖e
±i 𝑡

𝜖

|𝐷|√
1+

𝜇
3
𝐷2
𝜒(
√
𝜇|𝐷|) ∇𝑚|𝐷|𝑚 𝑓

‖‖‖‖‖‖‖𝐿∞𝑥
≲

𝜖
1

2

|𝑡| 12 ‖(1 + |𝐷|2)𝑓‖𝐿1
and from Lemma C2(ii)** together with Lemma B1 that

‖‖‖‖‖‖‖e
±i 𝑡

𝜖

|𝐷|√
1+

𝜇
3
𝐷2
(1 − 𝜒(

√
𝜇|𝐷|)) ∇𝑚|𝐷|𝑚 𝑓

‖‖‖‖‖‖‖𝐿∞𝑥
≲ 𝜇

3

4
𝜖
1

2

|𝑡| 12 ‖(1 + |𝐷|2)
3

2 𝑓‖𝐿1 .
One can then obtain corresponding Strichartz estimates from a 𝑇∗𝑇 argument: for any (𝑞, 𝑟) ∈

{(4,∞), (∞, 2)}, for any 𝜇 ∈ (0, 1], any 𝜖 ∈ (0, 1] and any𝑚 ∈ ℕ

‖‖‖‖‖‖‖e
±i 𝑡

𝜖

|𝐷|√
1+

𝜇
3
𝐷2 ∇𝑚|𝐷|𝑚 𝑓

‖‖‖‖‖‖‖𝐿𝑞𝑡 𝐿𝑟𝑥
≲ 𝜖

1

2

(
1

2
−

1

𝑟

)‖(1 + |𝐷|2) 32( 1

2
−

1

𝑟

)
𝑓‖𝐿2 ,

‖‖‖‖‖‖‖∫
𝑡

0

e

±i 𝑡−𝑠
𝜖

|𝐷|√
1+

𝜇
3
𝐷2 ∇𝑚|𝐷|𝑚𝐹(𝑠)𝑑𝑠

‖‖‖‖‖‖‖𝐿𝑞𝑡 𝐿𝑟𝑥
≲ 𝜖

1

2
(1−

1

𝑟
)‖(1 + |𝐷|2) 32 (1− 1

𝑟
)
𝐹‖

𝐿

4
3
𝑡 𝐿1𝑥

.

(12)

∥with 𝑙 = 2, 𝜂 =
1

2
.

** with 𝑠 = −3, 𝛼 = −4.
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15 of 35 MELINAND

3.3 Proofs of Theorems 2 and 3

We begin with the proof of Theorem 2. Using Duhamel’s principle

(
𝜁

∇

Δ
∇ ⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp(−𝑡𝐴(𝐷))

(
𝜁0

∇ ⋅ 𝐕0

)
= ∫

𝑡

0

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(𝜏 − 𝑡

𝜖
𝐴(𝐷)

)
𝐹(𝜁(𝜏), 𝐕(𝜏))𝑑𝜏

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
∶=𝐼

.

Let 1

𝑞
+

1

𝑟
=

1

2
and 𝜒 be a smooth compactly supported function that is equal to 1 near 0. By

Proposition 3 and interpolation, for any 𝑗 ∈ {1, 2}

‖‖‖‖‖‖‖𝜒
⎛⎜⎜⎝
√

𝜖√
𝜇
|𝐷|⎞⎟⎟⎠ 𝐼𝑗

‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≲

(
𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)) 1

𝑞
+

1

2

𝐵𝑗

where

𝐵1 ∶=
‖‖‖‖‖(1 + 𝜇|𝐷|2)2(1− 1

𝑟

)
∇ ⋅ (𝜁𝐕)

‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿1𝑥) +
‖‖‖‖‖‖‖‖
(1 + 𝜇|𝐷|2)2(1− 1

𝑟

)
√

1 +
𝜇

3
|𝐷|2 ((𝐕 ⋅ ∇)𝐕)

‖‖‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿1𝑥)
𝐵2 ∶=

‖‖‖‖‖‖‖‖
(1 + 𝜇|𝐷|2)2(1− 1

𝑟

)
√

1 +
𝜇

3
|𝐷|2 ∇ ⋅ (𝜁𝐕)

‖‖‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿1𝑥)
+

‖‖‖‖‖‖‖
(1 + 𝜇|𝐷|2)2(1− 1

𝑟

)
1 +

𝜇

3
|𝐷|2 ((𝐕 ⋅ ∇)𝐕)

‖‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿1𝑥)
.

Using Lemmas B1 and B5, we get

𝐵1 + 𝐵2 ≲ ‖‖𝜁‖𝐻5
𝑥
‖𝐕‖𝐻5

𝑥
‖𝐿2𝑡 (0,𝑇) + ‖‖𝐕‖2𝐻5

𝑥
‖𝐿2𝑡 (0,𝑇) ≲ 𝑇

1

2𝑀2.

Furthermore, using Lemma B3

‖‖‖‖‖‖(1 − 𝜒(

√
𝜖√
𝜇
|𝐷|))𝐼𝑗‖‖‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ

2))

≲
𝜖√
𝜇

‖‖‖|𝐷|2𝐼𝑗‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≲
𝜖√
𝜇

(‖‖𝜁‖𝐻3
𝑥
‖𝐕‖𝐻3

𝑥
‖𝐿1𝑡 (0,𝑇) + ‖‖𝐕‖2𝐻3

𝑥

‖𝐿1𝑡 (0,𝑇))
≲ 𝑇

𝜖√
𝜇
𝑀2
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MELINAND 16 of 35

whereas from Sobolev inequalities, Lemma B3 and (10) with 𝑟 = 𝑟 =
1

4

‖‖‖‖‖‖‖
⎛⎜⎜⎝1 − 𝜒

⎛⎜⎜⎝
√

𝜖√
𝜇
|𝐷|⎞⎟⎟⎠

⎞⎟⎟⎠ 𝐼𝑗
‖‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿∞𝑥 (ℝ2))

≲

‖‖‖‖‖‖‖
⎛⎜⎜⎝1 − 𝜒

⎛⎜⎜⎝
√

𝜖√
𝜇
|𝐷|⎞⎟⎟⎠

⎞⎟⎟⎠ 𝐼𝑗
‖‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝑊1,4

𝑥 (ℝ2))

≲ 𝑇
1

4

‖‖‖‖‖‖‖
⎛⎜⎜⎝1 − 𝜒

⎛⎜⎜⎝
√

𝜖√
𝜇
|𝐷|⎞⎟⎟⎠

⎞⎟⎟⎠ 𝐼𝑗
‖‖‖‖‖‖‖𝐿4𝑡 (0,𝑇;𝑊1,4

𝑥 (ℝ2))

≲ 𝑇
1

4

(
𝜖√
𝜇

) 1

2 ‖‖‖𝐼𝑗‖‖‖𝐿4𝑡 (0,𝑇;𝑊2,4
𝑥 (ℝ2))

≲ 𝑇
1

4
𝜖√
𝜇

(‖‖𝜁‖𝐻5
𝑥
‖𝐕‖𝐻5

𝑥
‖
𝐿

4
3
𝑡 (0,𝑇)

+ ‖‖𝐕‖2
𝐻5

𝑥
‖
𝐿

4
3
𝑡 (0,𝑇)

)

≲ 𝑇
𝜖√
𝜇
𝑀2.

The first bound follows byHölder’s inequality. One can similarly obtain the second bound.Note
that by differentiating one time we can also get a bound on ‖∇∇

Δ
⋅ 𝐕‖

𝐿2𝑡 (0,𝑇;𝑊
1,∞
𝑥 (ℝ2))

which will be
useful in the following.
On the other hand, since 𝐕̃ = ∇⟂∇⟂

Δ
⋅ 𝐕̃,

𝜕𝑡

(
∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃

)
+ ∇⟂∇

⟂

Δ
⋅ ((𝐕̃ ⋅ ∇)(𝐕 − 𝐕̃)) + ∇⟂∇

⟂

Δ
⋅ ((𝐕 − 𝐕̃) ⋅ ∇)𝐕) = 0

so that integrating by parts

1

2

𝑑

𝑑𝑡

(‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃‖2

𝐿2𝑥

)
= − ∫

ℝ2

((𝐕̃ ⋅ ∇)(𝐕 − 𝐕̃)) ⋅

(
∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

∶=𝐽1

− ∫
ℝ2

(((𝐕 − 𝐕̃) ⋅ ∇)𝐕) ⋅

(
∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

∶=𝐽2

.

Then

𝐽1 = ∫
ℝ2

(
(𝐕̃ ⋅ ∇)

(
∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃

))
⋅

(
∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃

)
+ ∫

ℝ2

(
(𝐕̃ ⋅ ∇)∇

∇

Δ
⋅ 𝐕

)
⋅

(
∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃

)
so that integrating by parts in the first integral and using that ∇ ⋅ 𝐕̃ = 0

|𝐽1| ≤ ‖∇∇
∇

Δ
⋅ 𝐕‖𝐿∞𝑥 ‖𝐕̃‖𝐿2𝑥‖∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃‖𝐿2𝑥 ,

 14679590, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12773 by U
niversitaet Paris-D

auphine, W
iley O

nline L
ibrary on [11/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



17 of 35 MELINAND

whereas

|𝐽2| ≤ ‖∇𝐕‖𝐿∞𝑥 ‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃‖2

𝐿2𝑥
+ ‖∇∇

Δ
⋅ 𝐕‖𝐿∞𝑥 ‖∇𝐕‖𝐿2𝑥‖∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃‖𝐿2𝑥

which yields

𝑑

𝑑𝑡

(‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃‖2

𝐿2𝑥

)
≤ 𝐶𝑀‖∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃‖2

𝐿2𝑥
+ 𝑀‖∇∇

Δ
⋅ 𝐕‖

𝑊
1,∞
𝑥
‖∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃‖𝐿2𝑥 .

Bounds on ∇⟂∇⟂

Δ
⋅ 𝐕 − 𝐕̃ follow from Grönwall’s inequality and previous bounds obtained on‖∇∇

Δ
⋅ 𝐕‖

𝐿2𝑡 (0,𝑇;𝑊
1,∞
𝑥 )

.
Concerning Theorem 3, one can use the previous strategy together with (12).†† The last bound

is a consequence of Morawetz-type estimates established in Proposition 4.

4 OTHER ABCD BOUSSINESQ SYSTEMS

In the previous two sections, we chose to present the rigid lid limit on one specific Boussinesq
system (the case 𝑎 = 𝑏 = 𝑐 = 0 and 𝑑 =

1

3
). There are other abcd-Boussinesq systems{

𝜖(1 − 𝜇𝑏Δ)𝜕𝑡𝜁 + ∇ ⋅ ([1 + 𝜖𝜁]𝐕) + 𝜇𝑎Δ∇ ⋅ 𝐕 = 0,

𝜖(1 − 𝜇𝑑∇∇⋅)𝜕𝑡𝐕 + ∇𝜁 + 𝜖(𝐕 ⋅ ∇)𝐕 + 𝜇𝑐Δ∇𝜁 = 0.
(13)

In the following, we assume that

𝑏 ≥ 0, 𝑑 ≥ 0, 𝑎 ≤ 0, 𝑐 ≤ 0 (14)

in order to get the well-posedness of the system (see, for instance, Ref. 19).
We introduce

𝑔(𝑦) = 𝑦

√
(1 − 𝑎𝑦2)(1 − 𝑐𝑦2)

(1 + 𝑏𝑦2)(1 + 𝑑𝑦2)
and 𝑅(𝑦) =

√
(1 − 𝑎𝑦2)(1 + 𝑑𝑦2)

(1 + 𝑏𝑦2)(1 − 𝑐𝑦2)
.

As before, in the 1D case if we denote by𝐔 = (𝜁, 𝑉)𝑇 we have the following system:

𝜖𝜕𝑡𝐔 + 𝐴(𝜕𝑥)𝐔 = 𝜖𝐹(𝜁, 𝑉),

where

𝐴(𝜕𝑥) =

(
0

(
1 − 𝜇𝑏𝜕2𝑥

)−1 (
1 + 𝜇𝑎𝜕2𝑥

)
𝜕𝑥

(1 − 𝜇𝑑𝜕2𝑥)
−1
(
1 + 𝜇𝑐𝜕2𝑥

)
𝜕𝑥 0

)

𝐹(𝜁, 𝑉) = −
⎛⎜⎜⎝
(
1 − 𝜇𝑏𝜕2𝑥

)−1
𝜕𝑥(𝜁𝑉)(

1 − 𝜇𝑑𝜕2𝑥
)−1

𝜕𝑥

(
1

2
𝑉2
)⎞⎟⎟⎠ .

†† It is not necessary to split the low and the high frequencies in that case since we do not use Proposition 3.
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MELINAND 18 of 35

Note that

exp(𝑡𝐴(𝜕𝑥)) =

⎛⎜⎜⎜⎝
cos

(
𝑡√
𝜇
𝑔(
√
𝜇𝐷)

)
𝑅(
√
𝜇𝐷) sin

(
𝑡√
𝜇
𝑔(
√
𝜇𝐷)

)
1

𝑅(
√
𝜇𝐷)

sin

(
𝑡√
𝜇
𝑔(
√
𝜇𝐷)

)
cos

(
𝑡√
𝜇
𝑔(
√
𝜇𝐷)

) ⎞⎟⎟⎟⎠ .
In the two-dimensional (2D) case if we denote by𝐔 = (𝜁,∇ ⋅ 𝐕)𝑇 , we get the following system:

𝜖𝜕𝑡𝐔 + 𝐴(𝐷)𝐔 = 𝜖𝐹(𝜁, 𝐕),

where

𝐴(𝐷) =

(
0 (1 − 𝜇𝑏Δ)−1(1 + 𝜇𝑎Δ)

(1 − 𝜇𝑑Δ)−1(1 + 𝜇𝑐Δ)Δ 0

)

𝐹(𝜁, 𝐕) = −

(
(1 − 𝜇𝑏Δ)−1∇ ⋅ (𝜁𝐕)

(1 − 𝜇𝑑Δ)−1∇ ⋅ ((𝐕 ⋅ ∇)𝐕)

)
.

Note that

exp(𝑡𝐴(𝐷)) =

⎛⎜⎜⎜⎝
cos

(
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)) 𝑅(

√
𝜇|𝐷|)|𝐷| sin

(
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|))

|𝐷|
𝑅(|𝐷|) sin

(
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)) cos

(
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|))

⎞⎟⎟⎟⎠ .
The strategy presented in the previous two sections together with ad hoc dispersive estimates

provides similar results for System (13), with a rate of convergence depending on how dispersive
System (13) is. The existence of solutions of (13) on an existence time independent of 𝜖 uniformly
with respect to 𝜇 ∈ (0, 1] can easily be adapted from Refs. 29 and 30.
The phase 𝑔 satisfies the following properties that are carefully studied in Refs. [31, Section 3.5].

First, if 𝑎 + 𝑏 + 𝑐 + 𝑑 ≠ 0

𝑔′(𝑟) − 1 ∼
𝑟∼0

−
3(𝑎 + 𝑏 + 𝑐 + 𝑑)

2
𝑟2, 𝑔′′(𝑟) ∼

𝑟∼0
−3(𝑎 + 𝑏 + 𝑐 + 𝑑)𝑟

whereas if 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0

𝑔′(𝑟) − 1 ∼
𝑟∼0

−
5(𝑎 + 𝑏)(𝑏 + 𝑐)

2
𝑟4, 𝑔′′(𝑟) ∼

𝑟∼0
−10(𝑎 + 𝑏)(𝑏 + 𝑐)𝑟3.

Second, there exists 𝛼 ∈ [−6, 1] ∩ ℤ, 𝓁,Λ1, Λ2 ∈ ℝ such that

𝑔′(𝑟) − 𝓁 ∼
∞

Γ1𝑟
𝛼+1, 𝑔′′(𝑟) ∼

∞
(𝛼 + 1)Γ1𝑟

𝛼, 𝑔′′′(𝑟) ≤ Γ2𝑟
𝛼−1.

The exact value of 𝛼 and 𝓁 (that depends on 𝑎, 𝑏, 𝑐, 𝑑) can be found in Refs. [31, Table 1]. Finally,
one can prove that |𝑔′| + |𝑔′′| + |𝑔′′′| > 0 on ℝ+ (see Ref. [31, Lemma 3.4]).
We can now state our results. We begin with the case 𝑛 = 1 in the case 𝑎 + 𝑏 + 𝑐 + 𝑑 ≠ 0.

Theorem 4. Let 𝑛 = 1. Let 𝑎, 𝑏, 𝑐, 𝑑 satisfying (14) and 𝑎 + 𝑏 + 𝑐 + 𝑑 ≠ 0. Let 𝑀 > 0, 𝑇 > 0,
𝜖 ∈ (0, 1] and 𝜇 ∈ (0, 1]. Let (𝜁, 𝑉) ∈ ([0, 𝑇]; (𝐻3 × 𝐻3)(ℝ)) a solution of (13) with initial datum

 14679590, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12773 by U
niversitaet Paris-D

auphine, W
iley O

nline L
ibrary on [11/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



19 of 35 MELINAND

(𝜁0, 𝑉0) such that

‖(𝜁, 𝑉)‖𝐿∞(0,𝑇;𝐻3(ℝ)×𝐻3(ℝ)) ≤ 𝑀.

There exists 𝑝 ∈ ℕ with 𝑝 ≥ 3 and a constant 𝐶 > 0 depending only on 𝑝 and 𝑎, 𝑏, 𝑐, 𝑑 such that for
any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

1

𝑝𝑟
=

1

2𝑝

‖‖‖‖‖
(
𝜁

𝑉

)
− e

−
𝑡

𝜖
𝐴(𝜕𝑥)

(
𝜁0
𝑉0

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(
𝜖

𝜇

) 1

2𝑝
+

1

𝑞

𝑀2𝑇
2𝑝−1

2𝑝 𝐶,

‖‖‖‖‖
(
𝜁

𝑉

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(
𝜖

𝜇

) 1

𝑞
⎛⎜⎜⎝𝑀 +𝑀2𝑇

2𝑝−1

2𝑝

(
𝜖

𝜇

) 1

2𝑝
⎞⎟⎟⎠𝐶.

Furthermore if |𝑔′′| > 0 onℝ∗
+, for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

1

2𝑟
=

1

4

‖‖‖‖‖
(
𝜁

𝑉

)
− e

−
𝑡

𝜖
𝐴(𝜕𝑥)

(
𝜁0
𝑉0

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(
𝜖

𝜇

) 1

4
+

1

𝑞

𝑀2𝑇
3

4 𝐶.

Finally, denoting 𝑝0 = 1 if |𝑔′| > 0 onℝ+, 𝑝0 = 2 if |𝑔′| + |𝑔′′| > 0 onℝ+ and 𝑝0 = 3 otherwise, we
have

sup
𝑥0∈ℝ

‖‖‖‖‖e−(𝑥−𝑥0)2
(
𝜁

𝑉

)‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ))

≤ 𝜖
1

2𝑝0 (𝑀 +𝑀2𝑇)𝐶.

If we denote by 𝑚 the maximum among the multiplicities of positive zeros of 𝑔′′ then one
can take 𝑝 = max(𝑚 + 2, 3). The proof of the previous theorem follows from dispersive estimates
based on LemmaC1‡‡ and the properties of 𝑔. We only provide a proof of the last point. Let𝜒1 be a
smooth bounded function supported on {|𝑔′| > 0} and 𝜒2 a smooth compactly supported function
supported on {|𝑔′′| + |𝑔′′′| > 0} with 0 ∉ supp(𝜒2). On the one hand, we get from Proposition 4
that

sup
𝑥0∈ℝ

‖‖‖‖‖e−(𝑥−𝑥0)2𝜒1(
√
𝜇|𝐷|)(𝜁

𝑉

)‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ))

≤ 𝜖
1

2 (𝑀 +𝑀2𝑇)𝐶.

On the other hand, using Lemma C1(ii)§§ together with Bernstein’s Lemma B2, we have

‖‖‖‖‖e±
i𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒2(
√
𝜇|𝐷|))𝑓‖‖‖‖‖𝐿∞ ≲

1

|𝑡| 1

𝑝0

‖|𝐷| 𝑝0−1𝑝0 𝜒2(
√
𝜇|𝐷|))𝑓‖𝐿1

‡‡with 𝛽 = 1, 𝑠 = 0, 𝑙 = 𝑝 and 𝛽 = 1, 𝑠 =
1

2
, 𝑙 = 2 for the third estimate.

§§ with 𝑙 = 𝑝0, 𝛼 = 0.
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MELINAND 20 of 35

so that from corresponding Strichartz estimates, we obtain

‖‖‖‖‖𝜒2(
√
𝜇|𝐷|))(𝜁

𝑉

)‖‖‖‖‖𝐿2𝑝0𝑡 (0,𝑇;𝐿∞𝑥 (ℝ))

≤ 𝜖
1

2𝑝0

(
𝑀 +𝑀2𝑇

2𝑝0−1

2𝑝0 𝜖
1

2𝑝0

)
𝐶.

The third point of the theorem follows from the fact that |𝑔′| + |𝑔′′| + |𝑔′′′| > 0 on ℝ+ and that
there exists 0 < 𝑦0 ≤ 𝑦1 such that 𝑔′ > 0 on [0, 𝑦0] ∪ [𝑦1,∞).

Remark 5. As noted in Remark 2 concerning Theorem 1, in the case 𝜖 ∼ 𝜇 as in Refs. 19 and 20
or when 𝜇 = (𝜖), the first estimate of Theorem 4 does not provide a convergence result as 𝜖 → 0

so that nonlinear terms must be taken into account and that asymptotic models like a system of
decoupling KdV equations

𝜖𝜕𝑡𝑔± ± 𝜕𝑥𝑔± ± 𝜇
𝑎 + 𝑏 + 𝑐 + 𝑑

6
𝜕3𝑥𝑔± ±

3

2
𝜖𝑔±𝜕𝑥𝑔± = 0

becomes relevant. A proof of such a result can be adapted from, for instance, Ref. [21, Section 7.3.2]
together with the symmetrizers and energy estimates from Refs. 29 and 30.

We now consider the case 𝑛 = 1 in the case 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0. We introduce the condition

((𝑎 + 𝑏)(𝑎 + 𝑑)(𝑐 + 𝑏)(𝑐 + 𝑑))2 + (𝑎 + 𝑏 + 𝑐 + 𝑑)2 > 0, (15)

which avoids the situation where 𝑔(𝑟) ≡ 𝑟 provides a nondispersive system when 𝑛 = 1.

Theorem 5. Let 𝑛 = 1. Let 𝑎, 𝑏, 𝑐, 𝑑 satisfying (14) with 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0. Let 𝑀 > 0, 𝑇 > 0,
𝜖 ∈ (0, 1] and 𝜇 ∈ (0, 1]. Let (𝜁, 𝑉) ∈ ([0, 𝑇]; (𝐻3 × 𝐻3)(ℝ)) a solution of (13) with initial datum
(𝜁0, 𝑉0) such that

‖(𝜁, 𝑉)‖𝐿∞(0,𝑇;𝐻3(ℝ)×𝐻3(ℝ)) ≤ 𝑀.

If 𝑎, 𝑏, 𝑐, 𝑑 satisfy (15), there exists 𝑝 ∈ ℕ with 𝑝 ≥ 5 and a constant 𝐶 > 0 depending only on 𝑝 and
𝑎, 𝑏, 𝑐, 𝑑 such that for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

1

𝑝𝑟
=

1

2𝑝

‖‖‖‖‖
(
𝜁

𝑉

)
− e

−
𝑡

𝜖
𝐴(𝜕𝑥)

(
𝜁0
𝑉0

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(

𝜖

𝜇2

) 1

2𝑝
+

1

𝑞

𝑀2𝑇
2𝑝−1

2𝑝 𝐶,

‖‖‖‖‖
(
𝜁

𝑉

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(

𝜖

𝜇2

) 1

𝑞
⎛⎜⎜⎝𝑀 +𝑀2𝑇

2𝑝−1

2𝑝

(
𝜖

𝜇2

) 1

2𝑝
⎞⎟⎟⎠𝐶.

Furthermore, if some 𝑙 ∈ {2, 3, 4}, we have
∑𝑙

𝑘=2
|𝑔(𝑘)| > 0 onℝ∗

+ and if we denote by 𝜎 = min(
2

5
,
1

𝑙
),

for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

𝜎

𝑟
=

𝜎

2

‖‖‖‖‖
(
𝜁

𝑉

)
− e

−
𝑡

𝜖
𝐴(𝜕𝑥)

(
𝜁0
𝑉0

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(

𝜖

𝜇2

) 𝜎

2
+

1

𝑞

𝑀2𝑇
2−𝜎

2 𝐶.
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21 of 35 MELINAND

Finally denoting 𝑝0 = 1 if |𝑔′| > 0 onℝ+, 𝑝0 = 2 if |𝑔′| + |𝑔′′| > 0 onℝ+ and 𝑝0 = 3 otherwise, we
have

sup
𝑥0∈ℝ

‖‖‖‖‖e−(𝑥−𝑥0)2
(
𝜁

𝑉

)‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ))

≤ 𝜖
1

2𝑝0 (𝑀 +𝑀2𝑇)𝐶.

If we denote by𝑚 the maximum among the multiplicities of positive zeros of 𝑔′′ then one can
take 𝑝 = max(𝑚 + 2, 5). Again, one can obtain dispersive estimates thanks to Lemma C1¶¶ and
the previous properties on the phase 𝑔. Note that the ratio 𝜖

𝜇2
comes from low-frequency estimates:

if 𝜒 is a smooth compactly supported function whose support is small enough and that is equal
to 1 near 0 and if 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0

‖‖‖‖‖e±
i𝑡

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒(
√
𝜇|𝐷|)𝜕𝑥𝑓‖‖‖‖‖𝐿∞ ≲

1

|𝑡| 25
(

𝜖

𝜇2

) 2

5 ‖𝑓‖𝐿1 ,
‖‖‖‖‖e±

i𝑡
𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒(
√
𝜇|𝐷|)𝑓‖‖‖‖‖𝐿∞ ≲

1

|𝑡| 15
(

𝜖

𝜇2

) 1

5 ‖𝑓‖𝐿1 .
Remark 6. When 𝜖 ∼ 𝜇 as in Refs. 19 and 20 or when 𝜇 = (𝜖), the first estimate of Theo-
rem 4 does not provide a convergence result as 𝜖 → 0. Again, nonlinear terms must be taken
into account. Note, however, that here one must consider a system of decoupling Burgers
equations

𝜖𝜕𝑡𝑔± ± 𝜕𝑥𝑔± ±
3

2
𝜖𝑔±𝜕𝑥𝑔± = 0.

A proof of such a result can be adapted from, for instance, Ref. [21, Section 7.3.2] together with
the symmetrizers and energy estimates from Refs. 29 and 30.

We now consider the case 𝑛 = 2 with 𝑎 + 𝑏 + 𝑐 + 𝑑 ≠ 0.

Theorem 6. Let 𝑛 = 2. Let 𝑎, 𝑏, 𝑐, 𝑑 satisfying (14) with 𝑎 + 𝑏 + 𝑐 + 𝑑 ≠ 0. Let 𝑀 > 0, 𝑇 > 0, 𝜖 ∈
(0, 1], and 𝜇 ∈ (0, 1]. Let (𝜁, 𝐕) ∈ ([0, 𝑇]; (𝐻6 × 𝐻6)(ℝ2)) be a solution of (13) with initial datum
(𝜁0, 𝐕0), and let 𝐕̃ ∈ ([0, 𝑇]; 𝐿2(ℝ2)) be a solution of the incompressible Euler equation (9) with
initial datum∇⟂∇⟂

Δ
⋅ 𝐕0 such that

‖(𝜁, 𝐕)‖𝐿∞(0,𝑇;(𝐻6×𝐻6)(ℝ2)) + ‖𝐕̃‖𝐿∞(0,𝑇;𝐿2(ℝ2)) ≤ 𝑀.

–If 𝑔′ and 𝑔′′ do not vanish onℝ∗
+, (𝜁, 𝐕) satisfy the same estimates as in Theorem 2.

¶¶ with 𝛽 = 3, 𝑠 = 0, 𝑙 = 𝑝 and 𝛽 = 3, 𝑠 = 5𝜎 − 1 for the third estimate.
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MELINAND 22 of 35

If 𝑔′ does not vanish on ℝ+ but 𝑔′′ vanishes on ℝ∗
+, there exists 𝜎 ∈ (

1

2
, 1) and a constant 𝐶 > 0

depending only on 𝑎, 𝑏, 𝑐, 𝑑 such that for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

𝜎

𝑟
=

𝜎

2‖‖‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(
−
𝑡

𝜖
𝐴(𝐷)

)( 𝜁0
∇ ⋅ 𝐕0

)‖‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤
(

𝜖√
𝜇

) 𝜎

2
+

1

𝑞

𝑀2𝑇
2−𝜎

2 𝐶,

‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤
(

𝜖√
𝜇

) 1

𝑞
⎛⎜⎜⎜⎝𝑀 +𝑀2𝑇

2−𝜎

2

(
𝜖√
𝜇

) 𝜎

2
⎞⎟⎟⎟⎠𝐶,

‖‖‖‖‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃

‖‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≤
(

𝜖√
𝜇

) 𝜎

2
⎛⎜⎜⎜⎝𝑀 +𝑀2𝑇

2−𝜎

𝜎

(
𝜖√
𝜇

) 𝜎

2
⎞⎟⎟⎟⎠𝑀𝑇

2−𝜎

2 e𝐶𝑀𝑇𝐶.

Furthermore, let 𝑝 = 2 if |𝑔′| + |𝑔′′| > 0 on ℝ+ and 𝑝 = 3 otherwise, there exists a constant 𝐶 > 0

depending only on 𝑎, 𝑏, 𝑐, 𝑑 such that for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

1

𝑝𝑟
=

1

2𝑝‖‖‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(
−
𝑡

𝜖
𝐴(𝐷)

)( 𝜁0
∇ ⋅ 𝐕0

)‖‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤ 𝜖
1

2𝑝
+

1

𝑞 𝑀2𝑇
2𝑝−1

2𝑝 𝐶,

‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤ 𝜖
1

𝑞

(
𝑀 +𝑀2𝑇

2𝑝−1

2𝑝 𝜖
1

2𝑝

)
𝐶,

‖‖‖‖‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃

‖‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≤ 𝜖
1

2𝑝

(
𝑀 +𝑀2𝑇

2𝑝−1

2𝑝 𝜖
1

2𝑝

)
𝑀𝑇

2𝑝−1

2𝑝 e𝐶𝑀𝑇𝐶.

Finally denoting 𝑝0 = 1 if |𝑔′| > 0 onℝ+, 𝑝0 = 2 if |𝑔′| + |𝑔′′| > 0 onℝ+ and 𝑝0 = 3 otherwise, we
have

sup
𝑥0∈ℝ2

‖‖‖‖‖‖e−(𝑥−𝑥0)
2

(
𝜁

∇
∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ2))

≤ 𝜖
1

2𝑝0 (𝑀 +𝑀2𝑇)𝐶.

If we denote by 𝑚 the maximum among the multiplicities of positive zeros of 𝑔′′ then one
can take 𝜎 =

𝑚+4

2𝑚+4
. Again, the key points are dispersive estimates that can be obtained from

Lemmas C2,## C3, and 4.
Finally, a similar result can be obtained in the case 𝑛 = 2 with 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0.

Theorem 7. Let 𝑛 = 2. Let 𝑎, 𝑏, 𝑐, 𝑑 satisfying (14) with 𝑎 + 𝑏 + 𝑐 + 𝑑 = 0. Let 𝑀 > 0, 𝑇 > 0, 𝜖 ∈
(0, 1], and 𝜇 ∈ (0, 1]. Let (𝜁, 𝐕) ∈ ([0, 𝑇]; (𝐻6 × 𝐻6)(ℝ2)) be a solution of (13) with initial datum

## with 𝛽 = 1, 𝑠 = 𝛼 if 𝓁 = 0 and 𝛽 = 1, 𝑠 = 𝛼−1

2
if 𝓁 ≠ 0.

 14679590, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12773 by U
niversitaet Paris-D

auphine, W
iley O

nline L
ibrary on [11/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



23 of 35 MELINAND

(𝜁0, 𝐕0), and let 𝐕̃ ∈ ([0, 𝑇]; 𝐿2(ℝ2)) be a solution of the incompressible Euler equation (9) with
initial datum∇⟂∇⟂

Δ
⋅ 𝐕0 such that

‖(𝜁, 𝐕)‖𝐿∞(0,𝑇;(𝐻6×𝐻6)(ℝ2)) + ‖𝐕̃‖𝐿∞(0,𝑇;𝐿2(ℝ2)) ≤ 𝑀.

If 𝑎, 𝑏, 𝑐, 𝑑 satisfies (15) and 𝑔′ > 0 on ℝ+, there exists 𝜎 ∈ (
1

2
,
4

5
] and 𝐶 > 0 depending only on

𝑎, 𝑏, 𝑐, 𝑑, such that for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

𝜎

𝑟
=

𝜎

2

‖‖‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(
−
𝑡

𝜖
𝐴(𝐷)

)( 𝜁0
∇ ⋅ 𝐕0

)‖‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤
⎛⎜⎜⎝
𝜖

𝜇
3

4

⎞⎟⎟⎠
𝜎

2
+

1

𝑞

𝑀2𝑇
2−𝜎

2 𝐶,

‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤
⎛⎜⎜⎝
𝜖

𝜇
3

4

⎞⎟⎟⎠
1

𝑞 ⎛⎜⎜⎜⎝𝑀 +𝑀2𝑇
2−𝜎

2

⎛⎜⎜⎝
𝜖

𝜇
3

4

⎞⎟⎟⎠
𝜎

2 ⎞⎟⎟⎟⎠𝐶,
‖‖‖‖‖∇⟂∇

⟂

Δ
⋅ 𝐕 − 𝐕̃

‖‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≤
⎛⎜⎜⎝
𝜖

𝜇
3

4

⎞⎟⎟⎠
𝜎

2 ⎛⎜⎜⎜⎝𝑀 +𝑀2𝑇
2−𝜎

2

⎛⎜⎜⎝
𝜖

𝜇
3

4

⎞⎟⎟⎠
𝜎

2 ⎞⎟⎟⎟⎠𝑀𝑇
2−𝜎

2 e𝐶𝑀𝑇𝐶.

Furthermore, let 𝑝 = 2 if |𝑔′| + |𝑔′′| > 0 on ℝ+ and 𝑝 = 3; otherwise, there exists a constant 𝐶 > 0

depending only on 𝑎, 𝑏, 𝑐, 𝑑 such that for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

1

𝑝𝑟
=

1

2𝑝

‖‖‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(
−
𝑡

𝜖
𝐴(𝐷)

)( 𝜁0
∇ ⋅ 𝐕0

)‖‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤ 𝜖
1

2𝑝
+

1

𝑞 𝑀2𝑇
2𝑝−1

2𝑝 𝐶,

‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤ 𝜖
1

𝑞

(
𝑀 +𝑀2𝑇

2𝑝−1

2𝑝 𝜖
1

2𝑝

)
𝐶,

‖‖‖‖‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃

‖‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≤ 𝜖
1

2𝑝

(
𝑀 +𝑀2𝑇

2𝑝−1

2𝑝 𝜖
1

2𝑝

)
𝑀𝑇

2𝑝−1

2𝑝 e𝐶𝑀𝑇𝐶.

Finally, denoting 𝑝0 = 1 if |𝑔′| > 0 onℝ+, 𝑝0 = 2 if |𝑔′| + |𝑔′′| > 0 onℝ+ and 𝑝0 = 3 otherwise, we
have

sup
𝑥0∈ℝ2

‖‖‖‖‖‖e−(𝑥−𝑥0)
2

(
𝜁

∇
∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ2))

≤ 𝜖
1

2𝑝0 (𝑀 +𝑀2𝑇)𝐶.
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MELINAND 24 of 35

If we denote by𝑚 the maximum among the multiplicities of positive zeros of 𝑔′′ then one can
take 𝜎 = min(

𝑚+4

2𝑚+4
,
4

5
). Again the key points are dispersive estimates that can be obtained from

Lemmas C2,∥∥ C3, and 4.

5 THE GREEN–NAGHDI EQUATIONS

The Green–Naghdi equations read as{
𝜖𝜕𝑡𝜁 + ∇ ⋅ ([1 + 𝜖𝜁]𝐕) = 0,

𝜖(1 + 𝜇 [𝜖𝜁])𝜕𝑡𝐕 + ∇𝜁 + 𝜖(𝐕 ⋅ ∇)𝐕 + 𝜖𝜇[𝜖𝜁](𝐕) = 0
, (16)

where

 [𝜖𝜁]𝐖 = −
1

3(1 + 𝜖𝜁)
∇
[
(1 + 𝜖𝜁)3∇ ⋅𝐖

]
[𝜖𝜁](𝐕) = −

1

3(1 + 𝜖𝜁)
∇
[
(1 + 𝜖𝜁)3((𝐕 ⋅ ∇)(∇ ⋅ 𝐕) − (∇ ⋅ 𝐕)2)

]
.

As before, in the 1D case if we denote by𝐔 = (𝜁, 𝑉)𝑇 we have the following system:

𝜖𝜕𝑡𝐔 + 𝐴(𝜕𝑥)𝐔 = 𝜖𝐹(𝜁, 𝑉),

where

𝐴(𝜕𝑥) =
⎛⎜⎜⎝

0 𝜕𝑥(
1 −

𝜇

3
𝜕2𝑥

)−1
𝜕𝑥 0

⎞⎟⎟⎠
𝐹(𝜁, 𝑉) = −

⎛⎜⎜⎝
𝜕𝑥(𝜁𝑉)(

1 −
𝜇

3
𝜕2𝑥

)−1 (
𝜕𝑥

(
1

2
𝑉2
)
+ 𝜇[𝜖𝜁](𝑉) + 𝜇 [𝜖𝜁]𝜕𝑡𝑉 +

𝜇

3
𝜕2𝑥𝜕𝑡𝑉

)⎞⎟⎟⎠ ,
whereas in the 2D case if we denote by𝐔 = (𝜁,∇ ⋅ 𝐕)𝑇 , we get

𝜖𝜕𝑡𝐔 + 𝐴(𝐷)𝐔 = 𝜖𝐹(𝜁, 𝐕),

where

𝐴(𝐷) =
⎛⎜⎜⎝

0 1(
1 −

𝜇

3
Δ
)−1

Δ 0

⎞⎟⎟⎠
𝐹(𝜁, 𝐕) = −

⎛⎜⎜⎝
∇ ⋅ (𝜁𝐕)(

1 −
𝜇

3
Δ
)−1

∇ ⋅
(
(𝐕 ⋅ ∇)𝐕 + 𝜇[𝜖𝜁](𝐕) + 𝜇 [𝜖𝜁]𝜕𝑡𝐕 +

𝜇

3
Δ𝜕𝑡𝐕

)⎞⎟⎟⎠ .
∥∥with 𝛽 = 3, 𝑠 = 𝛼 if 𝓁 = 0 and 𝛽 = 3, 𝑠 = 𝛼−1

2
if 𝓁 ≠ 0.
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25 of 35 MELINAND

We refer to Refs. 23 and 32 (see also Refs. 33 and 34) for the existence of solutions of (16) on an
existence time independent of 𝜖 that is uniform with respect to 𝜇 ∈ (0, 1].
We consider now the case 𝑛 = 1.

Theorem 8. Let 𝑀 > 0, 𝑇 > 0, ℎ0 > 0, 𝜖 ∈ (0, 1], and 𝜇 ∈ (0, 1]. Let (𝜁, 𝑉) ∈ ([0, 𝑇]; (𝐻5 ×

𝐻5)(ℝ)) a solution of (16) with initial datum (𝜁0, 𝑉0) such that

‖(𝜁, 𝑉)‖𝐿∞(0,𝑇;𝐻5(ℝ)×𝐻5(ℝ)) ≤ 𝑀 and 1 + 𝜖𝜁 ≥ ℎ0 on [0, 𝑇].

There exists a constant𝐶𝑑 > 0 polynomial in𝑀 and 1∕ℎ0 such that for any 𝑞, 𝑟 ≥ 2with 1

𝑞
+

1

2𝑟
=

1

6

‖‖‖‖‖
(
𝜁

𝑉

)
− e

−
𝑡

𝜖
𝐴(𝜕𝑥)

(
𝜁0
𝑉0

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(
𝜖

𝜇

) 1

6
+

1

𝑞

𝑇
5

6 𝐶𝑑,

‖‖‖‖‖
(
𝜁

𝑉

)‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ))

≤
(
𝜖

𝜇

) 1

𝑞
⎛⎜⎜⎝1 + 𝑇

5

6

(
𝜖

𝜇

) 1

6
⎞⎟⎟⎠𝐶𝑑,

sup
𝑥0∈ℝ

‖‖‖‖‖e−(𝑥−𝑥0)2
(
𝜁

𝑉

)‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ))

≤ 𝜖
1

2 (1 + 𝑇)𝐶𝑑.

The proof follows from the same strategy as the proof of Theorem 1 together with (6) and (7).***
One must control two new terms. Standard product estimates provide

‖‖[𝜖𝜁](𝐕)‖‖𝑊2,1
𝑥

≲ 𝐶

(
1

ℎ0
, ‖𝜁‖𝐻3

)‖𝑉‖2
𝐻5

‖‖‖‖𝜇 [𝜖𝜁]𝜕𝑡𝑉 +
𝜇

3
𝜕2𝑥𝜕𝑡𝑉

‖‖‖‖𝑊2,1
𝑥

≲ 𝐶

(
1

ℎ0
, ‖𝜁‖𝐻3

)‖𝜖𝜇𝜕𝑥𝜕𝑡𝑉‖𝐻3

and using, for instance, ideas from the proofs of Ref. [23, Lemmas 1 and 2] and standard product
estimates, we obtain

‖𝜖𝜇𝜕𝑥𝜕𝑡𝑉‖𝐻3 ≲ 𝜖𝐶

(
1

ℎ0
, ‖𝜁‖𝐻3

)‖‖∇𝜁 + 𝜖(𝑉 ⋅ ∇)𝑉 + 𝜖𝜇[𝜖𝜁](𝑉)‖‖𝐻2

≲ 𝐶

(
1

ℎ0
, ‖𝜁‖𝐻3, ‖𝑉‖𝐻5

)
.

Remark 7. As noted in Remark 2 concerning Theorem 1, in the case 𝜇 = (𝜖) the first estimate of
Theorem 8 does not provide a convergence result as 𝜖 → 0 so that nonlinear terms must be taken
into account and asymptotic models like a system of decoupling KdV equations or decoupling
BBM equations become relevant. We refer to Ref. [21, Chapter 7].

*** Note that the source term 𝐹 is not a derivative here so that one can not use (5).
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MELINAND 26 of 35

We now consider the case 𝑛 = 2. Applying the operator ∇⟂⋅ to the second equation of (16) and
denoting by 𝜔 ∶= ∇⟂ ⋅ 𝐕, we get the following equation:

𝜕𝑡𝜔 + (𝐕 ⋅ ∇)𝜔 + (∇ ⋅ 𝐕)𝜔 +
𝜖𝜇∇𝜁⟂

3(1 + 𝜖𝜁)2
⋅ ∇
[
(1 + 𝜖𝜁)3

(
∇ ⋅ 𝜕𝑡𝐕 + (𝐕 ⋅ ∇)(∇ ⋅ 𝐕) − (∇ ⋅ 𝐕)2

)]
= 0.

Theorem 9. Let 𝑀 > 0, 𝑇 > 0, ℎ0 > 0, 𝜖 ∈ (0, 1], and 𝜇 ∈ (0, 1]. Let (𝜁, 𝐕) ∈ ([0, 𝑇]; (𝐻9 ×

𝐻9)(ℝ2)) be a solution of (16) with initial datum (𝜁0, 𝐕0) and 𝐕̃ ∈ ([0, 𝑇]; 𝐿2(ℝ2)) be a solution
of the incompressible Euler equation (9) with initial datum ∇⟂∇⟂

Δ
⋅ 𝐕0 such that

‖(𝜁, 𝐕)‖𝐿∞(0,𝑇;(𝐻9×𝐻9)(ℝ2)) + ‖𝐕̃‖𝐿∞(0,𝑇;𝐿2(ℝ2)) ≤ 𝑀 and 1 + 𝜖𝜁 ≥ ℎ0 on [0, 𝑇].

There exists a constant 𝐶𝑑 > 0 polynomial in𝑀 and 1∕ℎ0 and a universal constant 𝐶 > 0 such that
for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

1

𝑟
=

1

2

‖‖‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(
−
𝑡

𝜖
𝐴(𝐷)

)( 𝜁0
∇ ⋅ 𝐕0

)‖‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤
(

𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)) 1

2
+

1

𝑞

𝑇
1

2 𝐶𝑑

+
𝜖√
𝜇
𝑇𝐶𝑑,

‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤
(

𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)) 1

𝑞
⎛⎜⎜⎜⎝1 +

(
𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)
𝑇

) 1

2
⎞⎟⎟⎟⎠𝐶𝑑

+
𝜖√
𝜇
(1 + 𝑇)𝐶𝑑,

‖‖‖‖‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃

‖‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≤
(

𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)) 1

2
⎛⎜⎜⎜⎝1 +

(
𝜖√
𝜇
ln
(
1 +

𝜇

𝜖2
𝑇
)
𝑇

) 1

2
⎞⎟⎟⎟⎠
√
𝑇e𝐶𝑀𝑇𝐶𝑑

+
𝜖√
𝜇
(1 + 𝑇)

√
𝑇e𝐶𝑀𝑇𝐶𝑑,

and there exists a constant 𝐶̃𝑑 > 0 polynomial in𝑀 and 1∕ℎ0 and a universal constant 𝐶̃ > 0 such
that for any 𝑞, 𝑟 ≥ 2 with 1

𝑞
+

1

2𝑟
=

1

4

‖‖‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)
−

⎛⎜⎜⎜⎝
1 0

0
𝜕1

Δ

0
𝜕2

Δ

⎞⎟⎟⎟⎠ exp
(
−
𝑡

𝜖
𝐴(𝐷)

)( 𝜁0
∇ ⋅ 𝐕0

)‖‖‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤ 𝜖
1

4
+

1

𝑞 𝑇
3

4 𝐶̃𝑑,

‖‖‖‖‖‖
(

𝜁
∇∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿𝑞𝑡 (0,𝑇;𝐿𝑟𝑥(ℝ2))

≤ 𝜖
1

𝑞

(
1 + 𝜖

1

4 𝑇
3

4

)
𝐶̃𝑑,
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27 of 35 MELINAND

‖‖‖‖‖∇⟂∇
⟂

Δ
⋅ 𝐕 − 𝐕̃

‖‖‖‖‖𝐿∞𝑡 (0,𝑇;𝐿2𝑥(ℝ
2))

≤ 𝜖
1

4

(
1 + 𝜖

1

4 𝑇
3

4

)
𝑇

3

4 e𝐶̃𝑀𝑇𝐶̃𝑑,

sup
𝑥0∈ℝ2

‖‖‖‖‖‖e−(𝑥−𝑥0)
2

(
𝜁

∇
∇

Δ
⋅ 𝐕

)‖‖‖‖‖‖𝐿2𝑡 (0,𝑇;𝐿2𝑥(ℝ2))

≤ 𝜖
1

2 (1 + 𝑇)𝐶̃𝑑.

The proof follows from the same strategy as the proofs of Theorems 2 and 3. One must control
two new terms. Standard product estimates provide

‖‖[𝜖𝜁](𝐕)‖‖𝑊4,1
𝑥

≲ 𝐶

(
1

ℎ0
, ‖𝜁‖𝐻5

)‖𝐕‖2
𝐻7

‖‖‖‖−𝜇

3
((1 + 𝜖𝜁)2 − 1)∇∇ ⋅ 𝜕𝑡𝐕 −

𝜖𝜇

3
(1 + 𝜖𝜁)2∇𝜁∇ ⋅ 𝜕𝑡𝐕

‖‖‖‖𝑊4,1
𝑥

≲ 𝐶

(
1

ℎ0
, ‖𝜁‖𝐻5

)‖𝜖𝜇𝜕𝑡∇ ⋅ 𝐕‖𝐻6

and using, for instance, Ref. [32, Lemmas 2.1 and 2.4] and standard product estimates, we obtain

‖𝜖𝜇𝜕𝑡∇ ⋅ 𝐕‖𝐻6 ≲ 𝐶

(
1

ℎ0
, ‖𝜁‖𝐻6

)‖‖∇𝜁 + 𝜖(𝐕 ⋅ ∇)𝐕 + 𝜖𝜇[𝜖𝜁](𝐕)‖‖𝐻5

≲ 𝐶

(
1

ℎ0
, ‖𝜁‖𝐻6, ‖𝐕‖𝐻8

)
.

Wenote the strategy used in the proof of Theorems 2 and 3 also provides bounds on ‖∇𝜁‖𝐿2𝑡 (0,𝑇;𝐿∞𝑥 ).
Second, a new term also appears in the control of the rotational component. We note that

∇⟂∇
⟂

Δ
⋅ (𝜇 [𝜖𝜁]𝜕𝑡𝐕 + 𝜇[𝜖𝜁](𝐕)) = −𝜖𝜇∇⟂∇

⟂

Δ
⋅
(
ℎ
[
∇ ⋅ 𝜕𝑡𝐕 + (𝐕 ⋅ ∇)(∇ ⋅ 𝐕) − (∇ ⋅ 𝐕)2

]
∇𝜁
)

and using previous bounds we get‖‖‖‖‖∇⟂∇
⟂

Δ
⋅ (𝜇 [𝜖𝜁]𝜕𝑡𝐕 + 𝜇[𝜖𝜁](𝐕))

‖‖‖‖‖𝐿2𝑥 ≤ 𝐶

(
1

ℎ0
, ‖𝜁‖𝐻2, ‖𝐕‖𝐻3

)‖∇𝜁‖𝐿∞𝑥
so that the strategy used in the proof of Theorems 2 and 3 to control the vorticity component can
easily be adapted.
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APPENDIX A: LITTLEWOOD–PALEY DECOMPOSITION
In this section, we introduce homogeneous and inhomogeneous Littlewood–Paley decomposi-
tions and provide basic properties. Let 𝜑0 be a smooth nonnegative even function supported in
[−1, 1], that is equal to 1 in

[
−

1

2
,
1

2

]
and that is nonincreasing on ℝ+. Then we define, for any

𝑦 ∈ ℝ and any 𝑗 ∈ ℤ the function 𝑃𝑗(𝑦) ∶= 𝜑0(2
−𝑗−1𝑦) − 𝜑0(2

−𝑗𝑦). We note that 𝑃𝑗 is a function
supported in the annulus (2𝑗−1, 2𝑗+1) for any 𝑗 ∈ ℤ.
For any 𝑦 ∈ ℝ

𝑃𝑗(𝑦) ∈ [0, 1], 𝜑0(𝑦) +
∑
𝑗∈ℕ

𝑃𝑗(𝑦) = 1, 1
2
≤ 𝜑0(𝑦)

2 +
∑
𝑗∈ℕ

𝑃2
𝑗
(𝑦) ≤ 1.

Then for any 𝑝 ∈ [1,∞] and any Schwartz class function 𝑓

𝜑0(|𝐷|)𝑓 +

𝑁∑
𝑗=0

𝑃𝑗(|𝐷|)𝑓 𝐿𝑝

→
𝑁→∞

𝑓

since

‖(1 − 𝜑0(2
−𝑁−1|𝐷|))𝑓‖𝐿𝑝 →

𝑁→∞
0.

Such decomposition of the function 𝑓 is called inhomogeneous Littlewood–Paley decomposition.
For any 𝑦 ∈ ℝ∗,

𝑃𝑗(𝑦) ∈ [0, 1],
∑
𝑗∈ℤ

𝑃𝑗(𝑦) = 1, 1
2
≤ ∑

𝑗∈ℤ

𝑃2
𝑗
(𝑦) ≤ 1.
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Then for any 𝑝 ∈ (1,∞] and any Schwartz class function 𝑓, we have∑
|𝑗|≤𝑁 𝑃𝑗(|𝐷|)𝑓 𝐿𝑝

→
𝑁→∞

𝑓

since

‖𝜑0(2
𝑁|𝐷|)𝑓‖𝐿𝑝 →

𝑁→∞
0 and ‖(1 − 𝜑0(2

−𝑁−1|𝐷|))𝑓‖𝐿𝑝 →
𝑁→∞

0.

Such decomposition of the function 𝑓 is called homogeneous Littlewood–Paley decomposition.

APPENDIX B: FOURIERMULTIPLIERS ON LEBESGUE SPACES
In this section, we gather useful estimates concerning Fourier multipliers on 𝐿𝑝. The first lemma
is about Bessel’s potential.
Lemma B1. Let 𝑛 = 1 or 2. For any 𝛼 ≥ 0, there exists a constant 𝐶 > 0 such that for any 𝑎 ≥ 0,
any 𝑝 ∈ [1,∞] and any 𝑓 ∈ 𝐿𝑝(ℝ𝑛)‖‖‖‖(1 + 𝑎|𝐷|2)−𝛼

2 𝑓
‖‖‖‖𝐿𝑝(ℝ𝑛)

≤ 𝐶‖𝑓‖𝐿𝑝(ℝ𝑛),

‖‖‖‖𝑎 𝛼

2 |𝐷|𝛼(1 + 𝑎|𝐷|2)−𝛼

2 𝑓
‖‖‖‖𝐿𝑝(ℝ𝑛)

≤ 𝐶‖𝑓‖𝐿𝑝(ℝ𝑛).

Furthermore, for any 𝛼 ≥ 0 and any 𝑏 > 0, there exists a constant𝐶 > 0 such that for any 𝑎 ≥ 0, any
𝑝 ∈ [1,∞] and any 𝑓 ∈ 𝐿𝑝(ℝ𝑛)‖‖‖‖(1 + 𝑏𝑎|𝐷|2) 𝛼2 (1 + 𝑎|𝐷|2)−𝛼

2 𝑓
‖‖‖‖𝐿𝑝(ℝ𝑛)

≤ 𝐶‖𝑓‖𝐿𝑝(ℝ𝑛).

Finally, for any 𝑝 ∈ (1,∞), there exists a constant 𝐶 > 0 such that for any 𝑓 ∈ 𝑊1,𝑝(ℝ𝑛)

‖|𝐷|𝑓‖𝐿𝑝 ≤ 𝐶‖∇𝑓‖𝐿𝑝 .
Proof. By homogeneity, one can assume 𝑎 = 1. As noted in Ref. [35, V.3.1], −1((1 + 4𝜋2|𝜉|2)−𝛼

2 )

is in 𝐿1(ℝ𝑛) so that the first bound follows Young’s convolution inequality. The second bound is
proved in Ref. [35, V.3.2].
Concerning the third point, we note from Ref. [35, V.3.2] that there exist two finite measures 𝜈

and 𝜇 on ℝ𝑛 such that

(1 + 𝑏𝑎|𝐷|2) 𝛼2 (1 + 𝑎|𝐷|2)−𝛼

2 𝑓 = 𝜈 ∗ (1 + 𝑎|𝐷|2)−𝛼

2 𝑓 + 𝜇 ∗ (𝑏𝑎)
𝛼

2 |𝐷|𝛼(1 + 𝑎|𝐷|2)−𝛼

2 𝑓

so that the result follows from the first point.
Finally, since |𝐷| = −

∑𝑛

𝑗=1

𝜕𝑖|𝐷|𝜕𝑖 , the last point follows from the fact that the Riesz transforms
are bounded on 𝐿𝑝 for 𝑝 ∈ (1,∞). □

We then recall Bernstein’s lemma.

LemmaB2. Let 𝑛 ∈ ℕ∗ and 𝑏 > 𝑎 > 0. Let 𝜙 a smooth function supported in [𝑎, 𝑏] and𝜒 a smooth
function compactly supported. Then, for any 𝑠 ∈ ℝ and any 𝑘 ∈ ℕ, there exists a constant𝐶 > 0 such
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that for any 𝜆 > 0, any 𝑝, 𝑞 ∈ [1,∞] with 𝑞 ≥ 𝑝 and any 𝑓 ∈ 𝐿𝑝(ℝ𝑛)

‖‖‖∇𝑘𝜒(𝜆−1|𝐷|)𝑓‖‖‖𝐿𝑞(ℝ𝑛)
≤ 𝐶𝜆

𝑘+𝑑(
1

𝑝
−

1

𝑞
)‖‖𝜒(𝜆−1|𝐷|)𝑓‖‖𝐿𝑝(ℝ𝑛)

,

1

𝐶
𝜆𝑠‖‖𝜙(𝜆−1|𝐷|)𝑓‖‖𝐿𝑝(ℝ𝑛)

≤ ‖‖|𝐷|𝑠𝜙(𝜆−1|𝐷|)𝑓‖‖𝐿𝑝(ℝ𝑛)
≤ 𝐶𝜆𝑠‖‖𝜙(𝜆−1|𝐷|)𝑓‖‖𝐿𝑝(ℝ𝑛)

.

Then, we provide a high-frequency result.

Lemma B3. Let 𝛽 > 0, 𝑛 ∈ ℕ∗. Let 𝜒 be a smooth compactly supported function that is equal to 1
near 0. There exists a constant 𝐶 > 0 such that for any 𝑝 ∈ [1,∞], any Schwartz class function 𝑓,
and any 𝜆 > 0

‖‖‖‖‖1 − 𝜒(𝜆|𝐷|)
(𝜆|𝐷|)𝛽 𝑓

‖‖‖‖‖𝐿𝑝(ℝ𝑛)

≤ 𝐶

‖‖‖‖‖‖‖
1 − 𝜒(𝜆|𝐷|)
(1 + 𝜆2|𝐷|2) 𝛽2 𝑓

‖‖‖‖‖‖‖𝐿𝑝(ℝ𝑛)

.

Proof. By homogeneity, one can assume 𝜆 = 1. Using Ref. [35, V.3.2], there exist two finite
measures 𝜈 and 𝜇 on ℝ𝑛 such that

(1 + |𝐷|2) 𝛽2
(1 + |𝐷|2) 𝛽2

1 − 𝜒(|𝐷|)|𝐷|𝛽 𝑓 = 𝜈 ∗
1 − 𝜒(|𝐷|)|𝐷|𝛽 1

(1 + |𝐷|2) 𝛽2 𝑓 + 𝜇 ∗
1 − 𝜒(|𝐷|)
(1 + |𝐷|2) 𝛽2 𝑓.

Then, we get ‖‖‖‖‖‖‖𝜇 ∗
1 − 𝜒(|𝐷|)
(1 + |𝐷|2) 𝛽2 𝑓

‖‖‖‖‖‖‖𝐿𝑝 ≲

‖‖‖‖‖‖‖
1 − 𝜒(|𝐷|)
(1 + |𝐷|2) 𝛽2 𝑓

‖‖‖‖‖‖‖𝐿𝑝 .
Furthermore, using a Littlewood–Paley decomposition as in Section A together with Bernstein’s
Lemma B2, there exists an integer 𝑘0 ∈ ℤ such that for any Schwartz class function 𝑔

‖‖‖‖‖1 − 𝜒(|𝐷|)|𝐷|𝛽 𝑔
‖‖‖‖‖𝐿𝑝 =

‖‖‖‖‖‖
∑
𝑗≥𝑘0

1 − 𝜒(|𝐷|)|𝐷|𝛽 𝑃𝑗(|𝐷|)𝑔‖‖‖‖‖‖𝐿𝑝 ≤ ∑
𝑗≥𝑘0

‖‖‖‖‖1 − 𝜒(|𝐷|)|𝐷|𝛽 𝑃0(2
−𝑗|𝐷|)𝑔‖‖‖‖‖𝐿𝑝

≲
∑
𝑗≥𝑘0

2−𝛽𝑗‖𝑃0(|𝐷|)(1 − 𝜒(|𝐷|))𝑔‖𝐿𝑝 ≲ ‖(1 − 𝜒(|𝐷|))𝑔‖𝐿𝑝
so that‖‖‖‖‖‖‖𝜈 ∗

1 − 𝜒(|𝐷|)|𝐷|𝛽 1

(1 + |𝐷|2) 𝛽2 𝑓
‖‖‖‖‖‖‖𝐿𝑝 ≲

‖‖‖‖‖‖‖
1 − 𝜒(|𝐷|)|𝐷|𝛽 1

(1 + |𝐷|2) 𝛽2 𝑓
‖‖‖‖‖‖‖𝐿𝑝 ≲

‖‖‖‖‖‖‖
1 − 𝜒(|𝐷|)
(1 + |𝐷|2) 𝛽2 𝑓

‖‖‖‖‖‖‖𝐿𝑝 .
□

In the following, we provide a boundedness result in 𝐿1 when 𝑛 = 1.
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Lemma B4. Let 𝑠 ∈ [0, 1). There exists a constant 𝐶𝑠 > 0 such that for any 𝑓 ∈ 𝑊1,1(ℝ)

‖|𝐷|𝑠𝑓‖𝐿1(ℝ) ≤ 𝐶𝑠‖𝑓‖𝑊1,1(ℝ)

and there exists a constant 𝐶 > 0 such that for any 𝑓 ∈ 𝑊2,1(ℝ)

‖|𝐷|𝑓‖𝐿1(ℝ) ≤ 𝐶‖𝑓‖𝑊2,1(ℝ).

Proof. Using an inhomogeneous Littlewood–Paley decomposition as in Section A, we have

‖|𝐷|𝑠𝑓‖𝐿1(ℝ) ≤ ‖𝜑0(|𝐷|)|𝐷|𝑠𝑓‖𝐿1(ℝ) +
∑
𝑗∈ℕ

‖‖‖sgn(𝐷)|𝐷|𝑠−1𝑃𝑗(|𝐷|)𝜕𝑥𝑓‖‖‖𝐿1(ℝ)
.

Using Lemma B1, Young’s convolution inequality and since 𝜉 ↦ 𝜑0(|𝜉|)(1 + |𝜉|2) 𝑠

2 is a smooth
compactly supported function

‖𝜑0(|𝐷|)|𝐷|𝑠𝑓‖𝐿1(ℝ) ≲
‖‖‖‖𝜑0(|𝐷|)(1 + |𝐷|2) 𝑠

2 𝑓
‖‖‖‖𝐿1(ℝ)

≲ ‖𝑓‖𝐿1(ℝ).

Thenwe note that for any𝛼 ∈ ℝ, themap 𝜉 ↦ sgn(𝜉)|𝜉|𝛼𝑃0(|𝜉|) is a smooth compactly supported
function so that

‖‖‖−1(sgn(𝜉)𝑘|𝜉|𝛼𝑃𝑗(|𝜉|))‖‖‖𝐿1 = 2𝛼𝑗
‖‖‖−1(sgn(𝜉)𝑘|𝜉|𝛼𝑃0(|𝜉|))‖‖‖𝐿1 ≲ 2𝛼𝑗.

Therefore, it follows from Young’s convolution inequality

‖|𝐷|𝑠𝑓‖𝐿1(ℝ) ≲ ‖𝑓‖𝐿1(ℝ) +
∑
𝑗∈ℕ

2(𝑠−1)𝑗‖𝜕𝑥𝑓‖𝐿1(ℝ),

and the first point follows. The second point follows the same way. □

A similar result can be obtained when 𝑛 = 2.

Lemma B5. Let 𝑠 ∈ [0, 2]. There exists a constant 𝐶 > 0 such that for any 𝑓 ∈ 𝑊2,1(ℝ2)

‖|𝐷|𝑠𝑓‖𝐿1(ℝ2) ≤ 𝐶‖𝑓‖𝑊2,1(ℝ2).

APPENDIX C: DISPERSIVE ESTIMATES
In this section, we gather different dispersive estimates that are useful through this work. These
are obtained from Ref. 31. We begin with the case 𝑛 = 1.
Lemma C1. Let 𝑛 = 1. Let 𝜆 > 0, 𝛼 ∈ ℝ with 𝛼 ∉ {−2,−1}, 𝛽 ≥ 0, and 𝑙 ∈ ℕ with 𝑙 ≥ 2. Assume
that 𝑔 is an odd 2 function. Let 𝑦1 > 𝑦0 > 0. Let 𝜒 be a smooth even compactly supported function
whose support is a subset of [−𝑦0, 𝑦0] and that is equal to 1 on [−

1

2
𝑦0,

1

2
𝑦0].

(i) Let 𝑠 ∈ [0,
𝛽

2
]. Assume that |𝑔′′| ≥ 𝜆𝑦𝛽 on [0, 𝑦0] and, if 𝑠 =

𝛽

2
, that |𝑔′ − 𝑔(0)| ≥ 𝜆𝑦𝛽+1 on

[0, 𝑦0]. There exists𝐶 > 0 such that for any𝜇 > 0, any 𝑡 ∈ ℝ∗, any𝑚 ∈ {0, 1}, and any Schwartz
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33 of 35 MELINAND

class function 𝑓

‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇𝐷)

𝜒(
√
𝜇𝐷)(sgn(𝐷))𝑚|𝐷|𝑠𝑓‖‖‖‖‖𝐿∞𝑥 ≤ 𝐶

|𝑡| 𝑠+12+𝛽

𝜇
−

(𝛽+1)(𝑠+1)

2(2+𝛽) ‖‖‖𝜒(√𝜇|𝐷|)𝑓‖‖‖𝐿1 .
(ii) Assume that 𝑔 is 𝑙(ℝ). Assume that

∑𝑙

𝑝=2
|𝑔(𝑝)| ≥ 𝜆 on [

1

2
𝑦0, 2𝑦1], that |𝑔′′| ≥ 𝜆𝑦𝛼 on [𝑦1,∞)

and, if 𝑙 = 2, that 1

𝜆
𝑦𝛼+1 ≥ |𝑔′ − 𝑎| ≥ 𝜆𝑦𝛼+1 on [𝑦1,∞) for some 𝑎 ∈ ℝ. There exists𝐶 > 0 such

that for any 𝜇 > 0, any 𝑡 ∈ ℝ∗ and any Schwartz class function 𝑓

‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇𝐷)

(1 − 𝜒(
√
𝜇𝐷))𝑓

‖‖‖‖‖𝐿∞𝑥 ≤ 𝐶

|𝑡| 1𝑙 𝜇
1−𝑙

2𝑙
‖‖‖‖(√𝜇|𝐷|) 𝑙−2−𝛼𝑙 (1 − 𝜒(

√
𝜇𝐷))𝑓

‖‖‖‖𝐿1 .
Proof. We introduce a homogeneous Littlewood–Paley decomposition as in SectionA. There exists
𝑘0 ∈ ℤ such that using Young’s convolution inequality and Bernstein’s Lemma B2

‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇𝐷)

𝜒(
√
𝜇𝐷)(sgn(𝐷))𝑚|𝐷|𝑠𝑓‖‖‖‖‖𝐿∞𝑥

=

‖‖‖‖‖‖
∑
𝑘≤𝑘0

e
i 𝑡√

𝜇
𝑔(
√
𝜇𝐷)

𝑃𝑘(
√
𝜇𝐷)(sgn(𝐷))𝑚|𝐷|𝑠𝜒(√𝜇|𝐷|)𝑓‖‖‖‖‖‖𝐿∞𝑥

≲

‖‖‖‖‖‖
∑
𝑘≤𝑘0

−1

(
e
i 𝑡√

𝜇
𝑔(
√
𝜇𝐷)

𝑃𝑘(
√
𝜇𝐷)(sgn(𝐷))𝑚|𝐷|𝑠)‖‖‖‖‖‖𝐿∞𝑥‖𝜒(

√
𝜇|𝐷|)𝑓‖𝐿1 .

The first inequality follows from Ref. [31, Lemma 2.6].
Second, if 𝑓 is compactly supported there exists 𝑘2, 𝑘1 ∈ ℤ such that using Young’s convolution

inequality

‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇𝐷)

(1 − 𝜒(
√
𝜇𝐷))𝑓

‖‖‖‖‖𝐿∞𝑥 =

‖‖‖‖‖‖
∑

𝑘2≥𝑘≥𝑘1
e
i 𝑡√

𝜇
𝑔(
√
𝜇𝐷)

𝑃𝑘(
√
𝜇𝐷)(1 − 𝜒(

√
𝜇𝐷))𝑓

‖‖‖‖‖‖𝐿∞𝑥
≲

‖‖‖‖‖‖
∑

𝑘2≥𝑘≥𝑘1
−1

(
e
i 𝑡√

𝜇
𝑔(
√
𝜇𝐷)

𝑃𝑘(
√
𝜇𝐷)|𝐷|𝑠)‖‖‖‖‖‖𝐿∞𝑥 ‖|𝐷|

−𝑠(1 − 𝜒(
√
𝜇𝐷))𝑓‖𝐿1

with 𝑠 = −
𝑙−2−𝛼

𝑙
. The second inequality follows fromRef. [31, Lemmas 2.6 and 2.9] and by density

of −1(∞
𝑐 (ℝ)). □

Then, we consider the case 𝑛 = 2.

Lemma C2. Let 𝑛 = 2. Let 𝜆 > 0, 𝑚 ∈ ℕ, 𝛽 ≥ 1, and 𝛼 ∈ ℝ with 𝛼 ∉ {−2,−1}. Assume that 𝑔 is
3(ℝ). Let 𝑦0 > 0. Let 𝜒 be a smooth even compactly supported function whose support is a subset of
[−𝑦0, 𝑦0] and that is equal to 1 on [0,

1

2
𝑦0].
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MELINAND 34 of 35

(i) Assume that |𝑔′′| ≥ 𝜆𝑦𝛽 , |𝑔′ − 𝑔′(0)| ≥ 𝜆𝑦𝛽+1, and |𝑔′| ≥ 𝜆 on [0, 𝑦0]. There exists 𝐶 > 0 such
that for any 𝜇 > 0, any 𝑡 ∈ ℝ∗, and any Schwartz class function 𝑓

‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒(
√
𝜇|𝐷|)( ∇|𝐷|

)𝑚

𝑓
‖‖‖‖‖𝐿∞𝑥 ≤ 𝐶

𝜇

(√
𝜇|𝑡|
) 5+𝛽

2(2+𝛽) ‖‖‖𝜒(√𝜇|𝐷|)𝑓‖‖‖𝐿1 .
(ii) Let 𝑠 ∈ ℝ such that (𝑠 + 2)(𝑠 − 𝛼) < 0 or 𝑠 = 𝛼. Assume that |𝑔′| ≥ 𝜆𝑦𝛼+1 and |𝑔′′| ≥ 𝜆𝑦𝛼 on

[
𝑦0

2
,∞) and, if 𝑠 = 𝛼, that |𝑔′| ≤ 1

𝜆
𝑦𝛼+1, |𝑔′′| ≤ 1

𝜆
𝑦𝛼 , and |𝑔′′′| ≤ 1

𝜆
𝑦𝛼−1 on [ 𝑦0

2
,∞). There exists

𝐶 > 0 such that for any 𝜇 > 0, any 𝑡 ∈ ℝ∗, and any Schwartz class function 𝑓

‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 − 𝜒(
√
𝜇|𝐷|))( ∇|𝐷|

)𝑚

𝑓
‖‖‖‖‖𝐿∞

𝑥

≤ 𝐶

𝜇

(√
𝜇|𝑡|
) 𝑠+2

2+𝛼 ‖‖‖(√𝜇|𝐷|)−𝑠(1 − 𝜒(
√
𝜇|𝐷|))𝑓‖‖‖𝐿1

.

(iii) Assume that𝛼 < −1. Let 𝑠 ∈ ℝ such that (𝑠 + 2)(𝑠 −
𝛼−1

2
) < 0 or 𝑠 = 𝛼−1

2
. Assume that |𝑔′| ≥ 𝜆

and |𝑔′′| ≥ 𝜆𝑦𝛼 on [ 𝑦0
2
,∞) and, if 𝑠 = 𝛼−1

2
, that 1

𝜆
𝑦𝛼+1 ≥ |𝑔′ − 𝑎| ≥ 𝜆𝑦𝛼+1 on [ 𝑦0

2
,∞) for some

𝑎 ∈ ℝ∗. There exists𝐶 > 0 such that for any𝜇 > 0, any 𝑡 ∈ ℝ∗, andany Schwartz class function
𝑓

‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)

(1 − 𝜒(
√
𝜇|𝐷|))( ∇|𝐷|

)𝑚

𝑓
‖‖‖‖‖𝐿∞𝑥≤

𝐶

𝜇

(√
𝜇|𝑡|
) 2(𝑠+2)

3+𝛼 ‖‖‖(√𝜇|𝐷|)−𝑠(1 − 𝜒(
√
𝜇|𝐷|))𝑓‖‖‖𝐿1 .

Proof. We begin with the case 𝑚 = 0. Point (i) follows directly from Ref. [31, Lemma 2.12]. Con-
cerning points (ii) and (iii), by introducing a Littlewood–Paley decomposition as in Section A and
proceeding as the previous lemma for high frequencies, Points (ii) and (iii) follow, respectively,
from Lemma Ref. [31, Lemma 2.15] and Ref. [31, Lemma 2.17].
We now consider the case 𝑚 ≥ 1. We claim that one can easily adapt the estimates in

Ref. [31, Section 2.4] to our setting. Indeed, in our case, one must estimate integrals under

the form ∫
ℝ+ e

i 𝑡√
𝜇
𝑔(
√
𝜇𝑟)

𝐽(𝑟|𝑥|)𝜒(√𝜇𝑟)𝑟𝑑𝑟 or ∫
ℝ+ e

i 𝑡√
𝜇
𝑔(
√
𝜇𝑟)

𝐽(𝑟|𝑥|)𝑃(√𝜇𝑟

2𝑘
)𝑟𝑠+1𝑑𝑟, where 𝐽(𝜏) =

∫ 2𝜋

0
ei𝜏 sin(𝜃)𝑢(𝜃)𝑑𝜃 and 𝑢 is a smooth periodic function (𝑢 ≡ 1 in Ref. [31, Section 2.4]). Simi-

larly as 𝐽0(𝜏) ∶= ∫ 2𝜋

0
ei𝜏 sin(𝜃)𝑑𝜃, one can decompose 𝐽 as 𝐽(𝜏) = ℎ̃−(𝜏)e

i𝜏 + ℎ̃+(𝜏)e
−i𝜏 where, for

any 𝑝 ∈ ℕ, |ℎ̃(𝑝)
± (𝜏)| ≲ (1 + |𝜏|)−𝑝− 1

2 . Then, one can adapt all the results of Ref. [31, Section 2.4]
replacing 𝐽0 by 𝐽 so that the strategy used to prove the case𝑚 = 0 also works. □

LemmaC3. Let𝑛 = 2. Let 𝜆 > 0,𝑚 ∈ ℕ. Assume that 𝑔 is2(ℝ). Let 𝑦1 > 𝑦0 > 0. Let𝜒 be a smooth
even compactly supported function whose support is a subset of [−𝑦0, 𝑦0] and that is equal to 1 on
[0,

1

2
𝑦0],𝜙 a smooth function supported in [

1

2
, 2]and 𝜒̃ a smooth compactly supported functionwhose

support is a subset of [𝑦0, 𝑦1]

(i) Assume that |𝑔′| ≥ 𝜆 and 𝑔′′ has a finite number of zeros on (0, 𝑦0]. There exists𝐶 > 0 such that
for any 𝜇 > 0, any 𝑡 ∈ ℝ∗, any 𝑙 ∈ ℕ, with 𝑙 ≥ 2, any 𝑘 ∈ ℤ and any Schwartz class function 𝑓

‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒(
√
𝜇|𝐷|)𝜙(2−𝑘√𝜇|𝐷|)( ∇|𝐷|

)𝑚

𝑓
‖‖‖‖‖𝐿∞𝑥 ≤ 𝐶

|𝑡| 1𝑙
(

2𝑘√
𝜇

)2−
1

𝑙 ‖‖‖𝜙(2−𝑘√𝜇|𝐷|)𝑓‖‖‖𝐿1 .
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35 of 35 MELINAND

In particular, for any 𝜂 > 0, there exists 𝐶𝜂 > 0 such that for any 𝜇 > 0, any 𝑡 ∈ ℝ∗, any 𝑙 ∈ ℕ

with 𝑙 ≥ 2, and any Schwartz class function 𝑓‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒(
√
𝜇|𝐷|)( ∇|𝐷|

)𝑚

𝑓
‖‖‖‖‖𝐿∞𝑥 ≤ 𝐶𝜂

|𝑡| 1𝑙
(‖‖‖‖|𝐷|2− 1

𝑙
−𝜂

𝑓
‖‖‖‖𝐿1 + ‖‖‖‖|𝐷|2− 1

𝑙
+𝜂

𝑓
‖‖‖‖𝐿1
)
.

(ii) Assume that 𝑔 is 𝑙(ℝ), that
∑𝑙

𝑝=1
|𝑔(𝑝)| ≥ 𝜆 and 𝑔′′ has a finite number of zeros on [𝑦0, 𝑦1].

There exists 𝐶 > 0 such that for any 𝑡 ∈ ℝ∗ and any 𝜇 > 0‖‖‖‖‖ei
𝑡√
𝜇
𝑔(
√
𝜇|𝐷|)

𝜒̃(
√
𝜇|𝐷|)( ∇|𝐷|

)𝑚

𝑓
‖‖‖‖‖𝐿∞𝑥 ≤ 𝐶

|𝑡| 1𝑙
‖‖‖‖|𝐷|2− 1

𝑙 𝑓
‖‖‖‖𝐿1 .

Proof. The first inequality is an easy adaptation of Ref. [31, Lemma 2.21(1)]. The second bound
is a consequence of the first bound together with the use of a Littlewood–Paley decomposition,
Bernstein’s Lemma B2 and the fact that

∑
2𝑘≤√𝜇

(
2𝑘√
𝜇

)𝜂

≲𝜂 1,
∑

√
𝜇≤2𝑘≤2𝑦0

(
2𝑘√
𝜇

)−𝜂

≤ ∑
√
𝜇≤2𝑘

(
2𝑘√
𝜇

)−𝜂

≲𝜂 1.

The third inequality easily follows from Ref. [31, Lemma 2.21(2)]. □

Finally, we provide Morawetz-type estimates.

Proposition 4. Let 𝑛 ∈ ℕ∗ and 𝑇 > 0. Assume that 𝑔 is 1(ℝ∗
+). There exists 𝐶 > 0 independent of

𝑇 such that for any function 𝑓 ∈ 𝐿2(ℝ𝑛), any function 𝐹 in 𝐿∞(0, 𝑇; 𝐿2(ℝ𝑛)), any 𝜇 > 0, any 𝜖 > 0,
any 𝑎 > 0, and any 𝑥0 ∈ ℝ𝑛

∫
𝑇

0
∫
ℝ𝑛

||||||𝑔′(√𝜇|𝐷|)| 12 ei 𝑡

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

𝑓
|||||
2

e
−

𝑎

2
|𝑥−𝑥0|2𝑑𝑥𝑑𝑡 ≤ 𝜖

𝐶√
𝑎
‖𝑓‖2

𝐿2𝑥
,

and

∫
𝑇

0
∫
ℝ𝑛

|||||∫
𝑡

0

|𝑔′(√𝜇|𝐷|)| 12 ei (𝑡−𝑠)𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

𝐹(𝑠, ⋅)𝑑𝑠
|||||
2

e
−

𝑎

2
|𝑥−𝑥0|2𝑑𝑥𝑑𝑡 ≤ 𝜖𝑇2 𝐶√

𝑎
‖𝐹‖2

𝐿2𝑠 (0,𝑇;𝐿
2
𝑥)
.

Proof. After an appropriate change of variable in time, we get from Ref. [31, Proposition 2.28]

∫
ℝ
∫
ℝ𝑛

|||||(|𝑔′(√𝜇|𝐷|)| 12 ei 𝑡

𝜖
√
𝜇
𝑔(
√
𝜇|𝐷|)

𝑓)(𝑥)
|||||
2

e
−

𝑎

2
|𝑥−𝑥0|2𝑑𝑥𝑑𝑡 ≤ 𝜖

𝐶√
𝑎
‖𝑓‖2

𝐿2
.

Then denoting by 𝐼 the second quantity to bound and using Jensen’s inequality and the previous
estimate we obtain

𝐼 ≤ ∫
𝑇

0

𝑇
‖‖‖‖‖(|𝑔′(√𝜇|𝐷|)| 12 ei (𝑡−𝑠)𝜖

√
𝜇
𝑔(
√
𝜇|𝐷|)

𝐹(𝑠, ⋅))e
−

𝑎

4
|𝑥−𝑥0|2‖‖‖‖‖

2

𝐿2𝑡 (𝑠,𝑇;𝐿
2
𝑥)

𝑑𝑠 ≤ 𝜖𝑇2 𝐶√
𝑎
‖𝐹‖2

𝐿2𝑠 (0,𝑇;𝐿
2
𝑥)
.

□
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