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a b s t r a c t

We investigate the complexity of problems related to s-clubs. Given a graph, an s-club
is a subset of vertices such that the subgraph induced by it has diameter at most s. We
show that partitioning a split graph into two 2-clubs is NP-hard. Moreover, we prove
that finding the minimum number of edges to add to a split graph in order to obtain a
diameter of at most 2 is W[2]-hard with respect to the number of edges to add. Finally
we show that finding the minimum number of edges to keep within a split graph of
diameter 2 or 3 in order to maintain its diameter is NP-complete.
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The recent development of social networks such as Facebook or Linkedin and online dating services has motivated
he investigation of community detection in such networks. A standard abstract model for those networks are graphs in
hich a community should intuitively describe some cohesion, oftenly corresponding to some density in a subgraph. The

irst intuitive way to define a community is to look for a group of people in which all members of this group know each
ther. In graphs, it corresponds to a clique. The problem of finding a clique of maximum size is a well known NP-hard
roblem [16]. However, considering communities as cliques is too restrictive: a subgraph with all possible internal edges
xcept one would not be considered as a community under this assumption, even if it probably should be in real world

social networks.
We can consider a less restrictive condition which still reflects cohesion. In this way, a community can be defined

s a group of people such that every two members have a ‘chain’ of relationship between them: the first person knows
someone who knows someone ... who knows the second member, with a restricted length for this chain. Given a graph,
okken [19] introduced the notion of s-club which is a vertex set such that the subgraph induced by the vertex set has
iameter at most s.
Problems around s-clubs have been well studied in the literature. A main one is, given a graph, to find an s-club of

maximum size, which has been well-studied [2,6,13–15,22].
Another problem consists in finding a partition into k parts of vertices that are all s-clubs, that we discuss in this

aper. This problem has been studied before [1,7,8,20]. The problem has been shown linear-time solvable in trees by
arley et al. [20]. Deogun et al. [8] proved that the problem is NP-complete for any k ≥ 3 and s ≥ 2 even in the case
here the graph is both split and undirected path. Moreover, for s = 2 the minimum number of parts is bounded by
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the domination number of a graph and is equal to the domination number on strongly chordal graphs [8]. Abbas and
Stewart [1] proved that minimizing the number of parts in a partition of a graph into s-clubs is NP-hard for any s ≥ 2 for
ipartite graphs, NP-hard on chordal graphs, and also NP-hard for split graphs with s = 2 and any k ≥ 3.
It is interesting to also study dynamic versions of community detection. In fact, real social networks are constantly

hanging and links between members can either appear or disappear. In this way, we also study problems related to
-clubs around adding and removing edges. Plesnik [21] studied the following problem: given a graph G, a cost function c
on the edges and an integer B, finding a spanning subgraph G′ of G with cost

∑
e∈G′ c(e) < B and with minimum diameter.

The associated decision problem has been proven NP-complete. Biló et al. [4] studied the two following problems. Given
 graph G = (V , E), and two positive integers D and B, find a minimum-cardinality set E ′ of edges to be added to G in such
 way that the diameter of G′

= (V , E ∪ E ′) is at most D. Given a graph G = (V , E), find a set E ′ of B edges to be added
o G in such a way that the diameter of G′

= (V , E ∪ E ′) is minimized. Both are known to be NP-hard. Deleting at most t
dges to a graph in order to obtain a graph of diameter at least s was proven NP-hard for k = |E| − |V | + 1 s = |V | − 1
y Schoone et al. [23].
The paper is organized as follows. In Section 2, we formally introduce the problems around s-clubs we studied. In

Section 3, we rectify an error in the literature [7] and show that the problem of finding a partition into two 2-clubs is
P-complete in split graphs. In Section 4, we discuss the problem of adding a minimum number of edges in a graph in
rder to become of diameter at most 2. In Section 5, we study the problem of finding the minimum number of edges to

keep in a graph while maintaining its diameter.

2. Preliminaries

In this section we define the basic notions we use and the problems we study in the paper.
Given a graph G = (V , E), we denote by xy the edge in E between two vertices x and y of V . A partition of V is a set of

subsets {V1, V2, . . . , Vp} of V for some integer p such that ∪
p
i=1Vi = V and for any two i, j ∈ {1, 2, . . . p}, i ̸ = j, Vi ∩ Vj = ∅.

A k-partition of V is a partition of V into k subsets. A spanning subgraph of G is a subgraph H = (V (H), E(H)) of G such
hat V (H) = V , E(H) ⊆ E, and H is connected. The kth power Gk

= (Vk, Ek) of a graph G = (V , E) is a graph such that
k = V , and for any two vertices x, y ∈ Vk, xy ∈ Ek if and only if the length of a shortest path between x and y in G is
maller than or equal to k. For k = 2, we name such graph the squared graph of G.
For a vertex x adding a twin copy of x consists of adding a vertex x′ that has the same set of neighbors as x. For any

ertices x, y of a given graph, we denote d(x, y) the length of a shortest path between x and y. Given a subset V1 ⊆ V we
enote dV1 (x, y) the length of a shortest path between x and y in the subgraph induced by V1. The diameter of a (sub)graph
s the longest distance between any pair of vertices in the (sub)graph. An s-club is a vertex subset S ⊆ V such that the
ubgraph of G induced by S has diameter at most s. A dominating set is a set of vertices D such that any vertex of the
raph is either in D or is adjacent to a vertex in D. A split graph is a graph such that its vertex set can be partitioned into
wo subsets, one inducing an independent set S and the other one inducing a clique K . Since we have several results in
his class of graphs, we introduce some notation for an easier reading. For any split graph G = (V = S ∪ K , E), S always
orresponds to the independent set and K to the clique. Moreover, for any dominating set D of G, we always consider
hat D is included in K . Indeed, if a vertex v of D belongs to S, we can take any neighbor v′ of v from K in D instead of v

rom S without compromising the fact that D is a dominating set.
We are interested in the following decision problems:
In Section 3, we investigate the following problem:

k-Partition into s-Clubs
Input: A graph G = (V , E) and two integers k, s.
Question: Is there a partition {P1, P2, . . . , Pk} of V , such that for each i ∈ {1, . . . , k} the part Pi is an

s-club?

In Section 4, we investigate the following problem:

s-Club Edge Insertion
Input: A graph G = (V , E) and two integers s, t .
Question: Is there a set of edges E ′ of size at most t , such that V is an s-club in the graph

G′
= (V , E ∪ E ′)?

In Section 5, we investigate the following problem:

Spanning s-Club
Input: A graph G = (V , E) and an integer t .
Question: Is there a set of edges E ′

⊂ E of size at most t , such that the graph G′
= (V , E ′) has diameter
at most s?
248
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In order to prove some NP-completeness results, we use the following NP-complete problem [12]:

Dominating Set
Input: A graph G = (V , E) and an integer t .
Question: Does G contain a size-t dominating set?

3. Partitioning into two 2-clubs

In this section we discuss which graphs can be partitioned into two (non-empty) 2-clubs. We start with bipartite
raphs.
Since a 2-club in a bipartite graph is a biclique, partitioning a bipartite graph G into k 2-clubs is equivalent to partition G

into k bicliques. A partition of a bipartite graph into two bicliques can be computed in polynomial time [12, problem GT15].
Moreover, partitioning a bipartite graph into k bicliques for any fixed k ≥ 3 is NP-complete [10]. Thus, we can conclude
that partitioning a bipartite graph into two 2-clubs can be done in polynomial time whereas partitioning a bipartite graph
into k 2-clubs, for any fixed k ≥ 3 is NP-complete.

Note that an interesting approach to detect s-clubs in graphs is to consider the power graph of the initial graph [7,13].
hang et al. [7] claimed that the minimum number of parts in a partition into 2-clubs in a graph G equals the minimum

number of cliques in a partition into cliques in G2. Actually, there exist graphs (even split graphs) in which there is no
artition into two 2-clubs but the squared graph contains a partition into two cliques. Consider the graph in Fig. 1 as an
xample.
In order to prove that partitioning a graph into two 2-clubs is NP-complete on split graphs, we reduce from the

P-complete Monotone 3-Sat [12].

Monotone 3-Sat
Input: A set X of variables, a collection C of clauses over X which contains either only negated

variables or only positive variables such that for each clause c ∈ C , |c| = 3.
Question: Is there a satisfying truth assignment for C?

Theorem 1. 2-Partition into 2-Clubs is NP-complete even on split graphs.

Proof. We reduceMonotone 3-Sat to 2-Partition into 2-Clubs on split graphs. Let I = (X, C) be an instance ofMonotone
-Sat with X the set of variables and C the set of clauses of size three, each clause being either positive or negative.

We denote C1 the subset of C of positive clauses and C0 the subset of C of negative ones. We define a split graph
G = (V = S ∪ K , E) as an instance of 2-Partition into 2-Clubs as follows (see Fig. 2).

We construct two sets Sp and Sn that contain at the beginning the vertices vp ∈ Sp and vn ∈ Sn, respectively. For
each clause ci ∈ C , we introduce two vertices ci,1 and ci,2. If ci is a positive clause (ci ∈ C1), then these two vertices are
introduced to Sp, otherwise to Sn. For each variable xi ∈ X we introduce a vertex xi in a subset Kx. Notice that |Kx| = |X |.
Let ci be a clause that contains either xj or xj, xj ∈ X . Then add the two edges xjci,1 and xjci,2. For each pair of vertices
u, v ∈ Sp (resp. in Sn) that do not correspond to the same clause, that is, {u, v} ⊆ Sp × Sp \ {{ci,1, ci,2} | ci ∈ C1} (resp.
{u, v} ⊆ Sn×Sn\ {{ci,1, ci,2} | ci ∈ C0}), do the following: introduce a new vertex z in a subset Kp (resp. Kn) and introduce two
edges uz, vz in E. Let S = Sp ∪Sn and K = Kp ∪Kx ∪Kn. Join any two vertices of K by an edge in E so the subgraph induced
by K becomes a clique, and thus we obtain a split graph G = (S ∪ K , E). Notice that |S| = O(|C |) and |K | = O(|C |

2
+ |X |).

Thus, the size of the instance G is polynomial in |X | and |C |.
Now we show that there is an assignment for the variables of X such that every clause of C is satisfied if and only if

here is a partition of V into two 2-clubs.
Suppose that there is an assignment satisfying all clauses from C . Then, we define the partition {V1, V0} of V into two

2-clubs as follows. Let K1 (resp. K0) be the set of all vertices xi ∈ Kx such that the corresponding variables xi ∈ X have
been assigned to true (resp. false). Define V1 = Sp ∪ Kp ∪ K1 (resp. V0 = Sn ∪ Kn ∪ K0). Next we show that for every pair
of vertices {z1, z2} in V1, dV1 (z1, z2) ≤ 2. First, for any z1, z2 ∈ V1 ∩ K , dV1 (z1, z2) = 1. Moreover, for any z1 ∈ V1 ∩ K ,
z2 ∈ V1 ∩ S, dV1 (z1, z2) ≤ 2 since any vertex of V1 ∩ S has a neighbor in V1 ∩ K . Finally, let z1, z2 ∈ V1 ∩ S. If they belong
to the same clause (say z1 = ci,1 and z2 = ci,2 for some i), then ci,1 and ci,2 must share at least one common neighbor in
K1 as the corresponding clause ci ∈ C1 is satisfied by the assignment. Otherwise, they have a common neighbor in Kp by
construction. Thus, z1 and z2 always have a common neighbor either in Kp or K1 and dV1 (z1, z2) = 2. Then, for any pair of
vertices {z1, z2} in V1, dV1 (z1, z2) ≤ 2. The same reasoning can be done for V0 by symmetry. Thus, {V1, V0} is a partition of
V ′ into two 2-clubs.

Suppose now that there is a partition {V1, V0} of V such that V1 and V0 are 2-clubs. First notice that, by construction,
(v , u) = 3 for each u ∈ S . Symmetrically, d(v , u) = 3 for each u ∈ S . Thus, we can assume without loss of
p n n p
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Fig. 1. A split graph in which there is no partition into two 2-clubs but there is a partition into two cliques in the squared graph. Some edges are
otted in G2 in order to highlight the partition into two cliques. The vertices a1 and b1 are at distance 3 in G. Thus, if a partition into two 2-clubs
xists in G, a1 and b1 must be in different parts. We can apply this reasoning for the vertices a1 and b2 , a1 and b3 and conclude that b1, b2, b3 are

in the same part. By symmetry, a1, a2, a3 are also in the same part. Since the only common neighbor of a2, a3 and b1, b2 is c , c needs to be in both
parts of G in order to have a partition into 2-clubs, which is impossible. Thus, there is no partition into two 2-clubs.

Fig. 2. The split graph G defined from the instance I = (X, C) with X = {x1, x2, x3, x4, x5, x6} and C = {x1 ∨ x2 ∨ x3, x4 ∨ x5 ∨ x6, x3 ∨ x5 ∨ x6, x1 ∨

x2 ∨ x3, x1 ∨ x3 ∨ x5, x4 ∨ x5 ∨ x6, }.

generality that Sp ⊂ V1 and Sn ⊂ V0. Consider the assignment α that sets every variable xj ∈ Kx ∩ V1 to true and every
ariable xj ∈ Kx ∩V0 to false. Let ci ∈ C1 be an arbitrary positive clause. By construction of Kp, the two vertices ci,1 and ci,2
o not have a common neighbor in Kp. Since ci,1, ci,2 ∈ V1, which is a 2-club, it follows that there is a vertex xj ∈ Kx ∩ V1
hat is adjacent to ci,1 and ci,2. Thus, α sets xj to true and satisfies ci. Hence, α satisfies all clauses in C1. Similarly, for each
i ∈ C0 there is a vertex xj ∈ Kx ∩ V0 that is adjacent to ci,1 and ci,2. Hence, α satisfies all clauses in C0 as well. □

Chang et al. [7] claimed that determining if the complement of the squared graph is bipartite allows to determine if
there is a partition of a graph into two 2-clubs. Actually, this only allows to determine if there is a covering into two
2-clubs (i.e. a set {C1, C2} of subsets of V such that C1 ∪C2 = V and C1, C2 are 2-clubs). In fact, there is a covering into two
2-clubs if and only if the complement of the squared graph is bipartite. Indeed, if the complement of the squared graph
is bipartite with the 2-partition (A, B), a covering into two 2-clubs can be determined by considering the partition (A, B)
and for any two vertices which are not at distance 2 in the subgraph induced by one part, add a common neighbor of
those two vertices into this part (without removing it from the original part). Notice that the existence of such bipartition
ensures that such vertex always exists. In Fig. 1, c would belong to both 2-clubs.

Partitioning 2-clubs into two 2-clubs. Theorem 1 implies that not every split graph can be partitioned into two 2-clubs. In
ontrast, this is always possible in diameter-two split graphs: Considering any vertex of the independent set in one part
nd the rest of the graph in the other part constitutes a 2-partition into two 2-clubs. For arbitrary graphs of diameter
wo, this changes again:

Theorem 2. There exist graphs of diameter two that cannot be partitioned into two 2-clubs.
We construct a graph G satisfying the properties of the above theorem, see Fig. 3 for an illustration of G. Start with a

cycle C = (α1, β1, γ1, α2, β2, γ2, . . . , αℓ, βℓ, γℓ) on 3ℓ vertices with ℓ sufficiently large (any ℓ ≥ 4 will work). Add three
ertices U = {uα, uβ , uγ } and add edges from all α- (β-, γ -)vertices to uα (uβ , uγ ), respectively. Now, for each pair of
ertices v , w ∈ C ∪U that has distance more than two add a ‘‘connector-vertex’’ cv ,w adjacent to v and w. Make all these
onnector-vertices a clique K . This completes the construction of G = (V = C ∪ U ∪ K , E).

Lemma 3. The constructed graph G is a 2-club that cannot be partitioned into two 2-clubs.

Proof. It is easy to verify that G has indeed diameter two: the set K ensures that each pair of vertices in C∪U has distance
t most two. Moreover, K is a clique and each vertex outside K has at least one neighbor in K .
Assume towards a contradiction that there is such a partition. That is, we can color each vertex red or blue so that

he red and blue vertices induce the two 2-clubs Gr and Gb, respectively. Moreover, there is at least one red and one blue
ertex.
250
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Fig. 3. The graph provided to show Theorem 2. For any pair of vertices on the left side, that have distance more than two, there is a common
neighbor in the clique K on the right side. These edges between left and right are only indicated for better visibility. The coloring of the vertices
on the left corresponds to the cases discussed in the proof of Lemma 3.

Assume that all vertices in C have the same color, say red. Then also all vertices in U have to be red (otherwise for
ome v ∈ {α , β , γ } we have distGr (v1, v2) > 2). By construction, all vertices in K are red (otherwise Gr is not a 2-club),
eaving no blue vertex, a contradiction.

We are left with the case where there are red and blue vertices in C . As all vertices are colored, this implies that there
as to be a pair of adjacent vertices in C that has different colors. Assume without loss of generality (the construction
s symmetrical) that α1 is blue and its neighbor β1 is red, see also Fig. 3. Then uα cannot be red as otherwise the only
ommon neighbor of the red uα and β1 is the blue α1, contradicting the fact that Gr has diameter two. Thus, uα is blue.
Similarly, uβ is red. It follows that at most one αi is red and at most one βi is blue.

Consider the case where uγ is blue (the case where it is red is analogous). Thus, at most one γi is red. Since ℓ ≥ 4, it
ollows that there is an i ∈ [ℓ] so that αi and γi are blue and βi is red (in Fig. 3 this is i = 3). This is a contradiction to Gb
having diameter two as βi is the only common neighbor of αi and γi. □

4. Edge Insertion

The s-Club Edge Insertion problem has been proved NP-complete for s = 3 by Schoone et al. [23] and NP-complete
for s = 2 by Li et al. [17]. The case s = 1 is trivial since it corresponds to adding edges between every pair of nonadjacent
vertices. Gao et al. [11] proved the W[2]-hardness of the problem w.r.t. the number t of edges to add, for any s ≥ 2 by
establishing a reduction from Dominating Set. Figiel et al. [9] extended the W[2]-hardness to graphs of diameter three.

We strengthen this further and prove that 2-Club Edge Insertion is W[2]-hard even on split graphs. Notice that even
if a solution is not required to be a split graph, we show in Theorem 4 that it is always possible to obtain a split graph of
diameter 2 with less edges than any solution.

Theorem 4. 2-Club Edge Insertion is W[2]-hard w.r.t. the number t of edges to add, even on split graphs.

Proof. We reduce Dominating Set on split graphs of diameter 2, which has been proved W[2]-hard by Lokshtanov
t al. [18], to 2-Club Edge Insertion on split graphs. Let G = (V = S ∪ K , E) be a split graph of diameter 2, instance of
ominating Set, where S corresponds to the independent set and K to the clique. We construct an instance G′

= (V ′, E ′)
of 2-Club Edge Insertion as follows. Consider a copy of G and add two new vertices s0, k0. The graph G′ is a split graph
ith V ′

= S ′
∪ K ′ where S ′

= S ∪ {s0} and K ′
= K ∪ {k0}. The set E ′ is obtained from E by adding edges between k0 and

every vertex v ∈ K and the edge k0s0 (see Fig. 4). We show now that there is a dominating set of size at most t in G if
and only if we can add at most t edges to G′ such that G′ has diameter 2.

Suppose that D is a dominating set of size t in G. We assume that D ⊆ K . The graph (V ′, E ′
∪D′) where D′

= {s0x : x ∈ D}

as diameter 2 since G has diameter 2, and any vertex from S has a neighbor in D and then s0 is at distance two from
ny vertex from S.
Suppose now that D′ is a set of non edges of G′ of size t such that G′′

= (V ′, E ′
∪D′) has diameter 2. We first show that

we can assume that all edges in D′ are between s0 and K . Let xy ∈ D′. If x = s0 and y ∈ S, let y′ be a neighbor of y in K
and the graph G′′

= (V ′, E ′
∪ D′

∪ {s y′
} \ {xy}) is still of diameter 2. If both x and y are different from s and x ∈ S, y ∈ K ,
0 0
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Fig. 4. The graph G′ and a set of edges (represented by dotted lines) of minimum size to add to make G′ having diameter 2 (a minimum dominating
et is given in gray).

then the graph G′′
= (V ′, E ′

∪ D′
\ {xy}) is still of diameter 2 since G has diameter 2. If now both x and y are different

from s0 and x ∈ S, y ∈ S, then the graph G′′
= (V ′, E ′

∪ D′
\ {xy}) is still of diameter 2 since G has diameter 2. Thus, we

an assume that all edges in D′ are between s0 and K (by updating D′ if necessary) and |D′
| ≤ t . Then, the set of vertices

djacent to s0 by an edge in D′ is necessarily a dominating set of G since s0 and any vertex of S must be at distance 2.
hus, we obtain a dominating set in G of size at most t . □

5. Spanning subgraphs

We investigate the complexity of Spanning s-Club. We show that in split graphs, Spanning 2-Club and Spanning
-Club are NP-complete while Spanning s-Club is polynomial time solvable for any s ≥ 4. We start with the latter.
Spanning s-Club is easy to solve for any s ≥ 4 in split graphs. Indeed, for any split graph G = (S ∪ K , E), define the

partial graph G′
= (V ′, E ′) as a tree such that for any v ∈ S, choose a unique edge e ∈ E adjacent to v in G and let introduce

e in E ′. Then choose any vertex x ∈ K and for any x′
∈ K such that x ̸ = x′, let xx′ be in E ′. The remaining graph G′ has

diameter 4 and the number of edges in E ′ is minimum since G′ is a tree (see Fig. 5).
In order to prove that Spanning 3-Club is NP-complete on split graphs, we introduce the following lemma:

Lemma 5. Let G = (V = S ∪ K , E) be a split graph. Let G′
= (V , E ′) be a spanning subgraph of G. If G′ has diameter three

and every vertex in S has degree one in G′, then the neighbors NG′ (S) of S in G′ form a clique and a dominating set for G.

Proof. Since the spanning subgraph G′
= (V , E ′) is of diameter 3 and any vertex in S has degree one in G′ then NG′ (S) is a

clique in G′. Assume by contradiction that it is not the case. Then there are two vertices u, v ∈ NG′ (S) such that uv /∈ E(G′).
hus, the vertices from S adjacent to u, v in G′ are at distance more than 3, contradicting the assumption that G′ is a 3-club.
oreover, by definition, each vertex in S has a neighbor in NG′ (S). Also each vertex in K \ NG′ (S) has a vertex in NG′ (S) as

he vertices in S have degree one. Thus, NG′ (S) is a dominating set for G. □

This lemma provides a clear way to show NP-completeness of Spanning 3-Club. Reduce from Dominating Set on split
raphs and modify the graph such that a minimum dominating set remains unchanged but the minimum spanning 3-club
as all vertices in the independent set as degree-one vertices. This is exactly what we are doing to obtain the next result.

Theorem 6. Spanning 3-Club is NP-complete even on split graphs.

Proof. We reduce from the NP-complete problem Dominating Set on split graphs [3] to Spanning 3-Club on split graphs.
Let (G = (V = S∪K , E), b) be an instance of Dominating Set, where S corresponds to the independent set, K to the clique,
and b to the size of the dominating set. We construct an instance Ĝ = (V̂ , Ê) of Spanning 3-Club starting from G and
inserting ℓ = |K |

2 twin copies v1, . . . , vℓ for each vertex v ∈ S. We show that there is a dominating set of size at most b
in G if and only if there is a spanning subgraph containing at most b(b − 1)/2 + |̂V | − b edges which is a 3-club.

Let D be a dominating set of size b in G, D ⊆ K . Define the following spanning subgraph G′
= (V̂ , E ′) with E ′

⊂ E (̂G).
For each pair of vertices {x, y} in D, xy belongs to E ′. Moreover, for each v ∈ V̂ \ D, choose any edge vx with x ∈ D in E ′.
Note that |E ′

| = b(b − 1)/2 + |V (̂G)| − b and it is easy to see that G′ is a spanning subgraph of diameter 3.
Now let G′

= (V̂ , E ′) be a spanning subgraph of Ĝ of diameter 3 with |E ′
| ≤ b(b− 1)/2+ |V (̂G)| − b for some integer b.

If there exists at least one group of ℓ twin vertices v1, . . . , vℓ such that each of these vertices has at least two neighbors
n G′, then we change G′ as follows: make K a clique in G′ and have for each vertex vi one neighbor in K . This results in
nother spanning subgraph G′′ of diameter 3. Moreover, G′′ has potentially

(
|K |

2

)
more edges than G′ (making K a clique)

but saves ℓ = |K |
2 >

(
|K |

2

)
edges by having all vi of degree one. Thus, overall G′′ has less edges than G′. Applying this

argument to each twin group results in a spanning subgraph G′′′ of diameter 3 where each twin group has at least one
vertex vi of degree one. Let S ′ be the set of all these degree-one vertices. By Lemma 5 the set NG′′′ (S ′) is a dominating set
or G′

[K ∪ S ′
]. Since S ′ contains a vertex from each twin group, that is, for each vertex v ∈ S, it follows that NG′′′ (S ′) is a

ominating set for G. Moreover, since G′′′ contains at most b(b − 1)/2 + |V (̂G)| − b edges and NG′′′ (S ′) is, by Lemma 5, a
lique, it follows that |NG′′′ (S ′)| ≤ b. Thus, NG′′′ (S ′) is a dominating set of size at most b for G. □
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Fig. 5. A split graph and its spanning subtree of diameter 4.

Theorem 7. Spanning 2-Club is NP-complete even on split graphs.

Proof. We reduce Dominating Set, which remains NP-complete on split graphs of diameter 2 [18], to Spanning 2-Club on
split graphs. Let G = (V = S∪K , E) be the split graph of diameter 2 in the Dominating Set instance, where S corresponds
to the independent set and K to the clique. Set ℓ = |E| +1. We construct an instance Ĝ of Spanning 2-Club as follows. Let S ′

be an independent set of size ℓ that will be completely connected to K in Ĝ. Thus, Ĝ = (V̂ , Ê) = (S ∪ S ′
∪ K , E ∪ (S ′

× K )).
e show that there is a dominating set of size at most b in G if and only if there is a spanning diameter-2 subgraph in
containing at most bℓ + |E| edges.
Let D be a dominating set of size at most b in G, D ⊆ K . Consider the following spanning subgraph G′

= (V̂ , E ′)
with E ′

⊂ Ê, where E ′ contains all edges from E and edges between any vertex in D and any vertex in S ′, that is
|E ′

| = |E| + ℓ|D| ≤ |E| + ℓb. Clearly G′ is a 2-club.
Now let G′′

= (V̂ , E ′′) be a spanning subgraph of Ĝ of diameter 2 such that |E ′′
| ≤ bℓ + |E|. Since bℓ + |E| < (b + 1)ℓ,

there exists v′
∈ S ′ such that dG′′ (v′) ≤ b (if not, then dG′′ (v′) ≥ b + 1 for any v′

∈ S ′ and |E ′′
| ≥ (b + 1)ℓ that is a

ontradiction). Since G′′ is a 2-club then NG′′ (v′) is a dominating set of size at most b in G. □

The above two theorems imply that Spanning s-Club is NP-complete in general graphs for any s ≥ 1: This can be proven
by using the ℓ-path extension of a graph: For any ℓ ≥ 1, the ℓ-path extension of a graph G is the graph G′ constructed
from the graph G by adding for each vertex v of G a path of length ℓ starting at v (see Fig. 6). Notice that a graph G is the
0-path extension of itself.

Theorem 8. Spanning s-Club is NP-complete on general graphs for any s ≥ 2.

Proof. For s = 2 and s = 3 the result follows from Theorems 6 and 7. Thus, let s ≥ 4 be an integer.
If s is even, then we reduce from Spanning 2-Club, otherwise from Spanning 3-Club. In both cases, the reduction is

the same: Set ℓ = ⌊(s − 2)/2⌋. Given the graph G = (V , E) we construct the ℓ-path extension Ĝ of G. Subsequently, we
consider only the case where s is odd. The case where s is even is analogous.

We show that G has a spanning 3-club containing at most t edges if and only if Ĝ contains a spanning s-club containing
at most t + ℓ|V | edges.

Let H be a spanning 3-club with at most t edges. Hence, we set Ĥ as H plus all the added paths with the ℓ-path
xtension. Clearly, Ĥ has at most t + ℓ|V | edges. Moreover, Ĥ is an s-club: Any pair of vertices within H has distance at
ost 3. Thus, any pair of vertices in Ĥ has distance at most 3 + 2ℓ = s.
Conversely, let Ĥ be a spanning s-club in Ĝ with at most t + ℓ|V | edges. We claim that H := Ĥ[V ] is a spanning

-club with at most t edges: As Ĥ is connected, it contains all ℓ|V | edges in the added paths. Thus, H has at most t edges.
Moreover, we claim H has diameter 3. Assume otherwise: There are two vertices u, v at distance 4 or more. However,
then the endpoints of the two ℓ-paths starting in u and v, respectively, have distance at least 4 + 2ℓ = s + 1 in Ĥ , a
ontradiction. □

6. Conclusion

In this paper, we saw that partitioning a graph into two 2-clubs is harder than expected [7]. We further proved that
-Club Edge Insertion is W[2]-hard with respect to the number of edges to add. We also showed that Spanning 2-club
nd Spanning 3-club are NP-complete. All these hardness results also hold on split graphs. Moreover, Spanning s-club is
hown NP-complete on general graphs for any integer s ≥ 2. It will be interesting to determine large subclasses of split
raphs [5] for which our problems are still NP-complete or they become polynomial-time solvable. Finally, what is the

complexity of determining whether a 2-club (or in general s-club) can be partitioned into two 2-clubs (two s-clubs)?

Data availability

No data was used for the research described in the article.
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Fig. 6. A split graph and its 1-path extension and 2-path extension.
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