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Abstract
We consider an inhomogeneous oriented percolation model

introduced by de Lima, Rolla and Valesin. In this model,

the underlying graph is an oriented rooted tree in which

each vertex points to each of its 𝑑 children with “short”

edges, and in addition, each vertex points to each of its 𝑑
k

descendant at a fixed distance k with “long” edges. A bond

percolation process is then considered on this graph, with

the prescription that independently, short edges are open

with probability p and long edges are open with proba-

bility q. We study the behavior of the critical curve qc =
qc(p, k, 𝑑): we find the first two terms in the expansion of qc
as k → ∞. We also prove limit theorems for the percolation

cluster in the supercritical, subcritical and critical regimes.

KEYWORDS

critical curve, inhomogeneous percolation, long range per-

colation

1 INTRODUCTION

1.1 Background and motivation

This article is a continuation of the work presented in [10]. In that paper, the authors considered an

oriented graph whose vertex set is that of the 𝑑-regular, rooted tree, containing “short edges” (with

which each vertex points to its 𝑑 children) and, for some k ∈ N fixed, “long edges” of range k (with

which each vertex points to its 𝑑
k

descendants k generations below). Percolation is defined on this

graph by letting short edges be open with probability p and long edges with probability q. For all
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520 LIMA ET AL.

fixed q one can define the critical percolation threshold as the supremum of the values of p for which

there is almost surely no infinite cluster at parameters p, q. The authors of [10] study the properties of

this critical curve and prove monotonicity with respect to the length of the long edges.

The work was originally motivated by the following problem. Consider the graph having Z𝑑
as

vertex set and all edges of the form {x, x± ei} and {x, x± k ⋅ ei} for some k ≥ 2 and i ∈ {1, … , 𝑑}. It

was shown in [12] that the critical probability for Bernoulli bond percolation on this graph converges

to that of Z2𝑑
as k → ∞. This result was later generalized in [14]. The convergence is conjectured to

be monotone, that is, the percolation threshold for the above graph should be decreasing in the length k
of long edges.

Percolation is mostly studied on the lattice Z𝑑
in homogeneous environment (that is, each edge

is open with the same probability independently of each other). Let us briefly mention some related

works that consider an inhomogeneous setting. In [9] an oriented site percolation model is considered

on Z2
+ in a random environment. Each line li ∶= {(x, y) ∈ Z2

+ ∶ x + y = i} is declared to be bad with

probability 𝛿, then the sites on bad lines are open with probability pB and every other site is open with

probability pG. It is shown that for all pG > pc(Z2
+) and pB > 0 we can choose 𝛿 > 0 small enough,

that there is an infinite cluster with positive probability. Another interesting paper with the same spirit

is [5], about Brochette percolation. A bond percolation model is considered on Z2
where vertical lines

of the form li ∶= {(x, y) ∈ Z2
+ ∶ x = i} are selected at random with probability 𝛿, then the edges on the

selected lines are open with probability p and every other edge is open with probability q. The authors

show that for all p > pc(Z2) and any 𝛿 > 0 we can choose q < pc(Z2) such that there is an infinite

cluster with positive probability.

In [7] the authors study a nonoriented bond percolation model on Z𝑑
with an s-dimensional defect

plane Zs
. Edges of Z𝑑 ⧵ Zs

are open with probability p and edges of Zs
are open with probability 𝜎.

They present the phase diagram of the model and identify three regimes in which the model exhibits

quantitatively different behavior. They also show that the critical curve is a strictly decreasing function

for p with a jump discontinuity at pc(Z𝑑).
In [6] the authors consider nonoriented percolation on the direct product of a regular tree and Z,

where tree edges and line edges are open with different probabilities. They identify three distinct phases

in which the number of clusters is 0,∞ and 1 respectively.

In [16] for an arbitrary connected graph G = (V ,E) a nonoriented and an oriented percolation

model are defined on the vertex set V × Z. The authors examine how changing the percolation parame-

ter on a fixed (infinite) set of edges affects the critical behavior. They show that in both cases the critical

parameter changes as a continuous function of these parameters. This result was later generalized

in [11].

1.2 Description of the model and results

Given 𝑑, k ∈ {2, 3, … }, define an oriented graph T = T𝑑,k = (V ,E) in the following way. Denote

[𝑑] = {1, … , 𝑑}, [𝑑]∗ =
⋃

0≤n<∞
[𝑑]n.

The set [𝑑]0 consists of a single point o, which we will refer to as the root of the graph. Set V = [𝑑]∗,
that is, elements of V are sequences v = (v1, … , vm) with vi ∈ [𝑑] (and the root o). Define the

concatenation of u = (u1, … , um) and v = (v1, … , vn) as

u ⋅ v = (u1, … , um, v1, … , vn);
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LIMA ET AL. 521

v ⋅ o = o ⋅ v = v.

Further let E = Es ∪ E𝓁 be the set of oriented edges with

Es = {⟨r, r ⋅ i⟩ ∶ r ∈ V , i ∈ [𝑑]}, E𝓁 = {⟨r, r ⋅ i⟩ ∶ r ∈ V , i ∈ [𝑑]k}.

We will refer to these sets as the set of “short” and “long” edges, respectively. Define the out-degree

of a vertex as the number of oriented edges directed out of the vertex. Note that in T𝑑,k every vertex

has out-degree 𝑑 + 𝑑
k
.

Consider the following percolation model on T: every edge in Es is open with probability p, and

every edge in E𝓁 is open with probability q, independently of each other. Denote the law of the model

by Pp,q. We will omit the subscript p, q when it is clear from the context; we will also generally omit 𝑑

and k from the notation. Define the cluster of the root𝒞 = 𝒞p,q as the set of vertices that can be reached

by an oriented open path from o, and |𝒞 | as its cardinality. Whether or not the event {|𝒞p,q| = ∞}
occurs with positive probability depends on p, q, 𝑑 and k. We define

qc = qc(p, k, 𝑑) ∶= inf{q ∶ P(|𝒞p,q| = ∞) > 0}.

Note that the model with q = 0 reduces to oriented percolation on a 𝑑-ary tree, and the model with p =
0 reduces to oriented percolation on disconnected 𝑑

k
-ary trees. This shows that qc(0, k, 𝑑) = 𝑑

−k

and qc(p, k, 𝑑) = 0 for p > 𝑑
−1

.

In [10] the authors show that qc is continuous and strictly decreasing in p in the region where it is

positive (namely, for p ∈ [0, 𝑑−1]), and there is almost surely no infinite cluster for p ∈ [0, 𝑑−1] and q =
qc. Additionally, it is easy to see that this percolation model is stochastically dominated by a branching

process with offspring distribution that is the sum of two independent binomial random variables,

namely Bin(𝑑, p) and Bin(𝑑k
, q). This branching process is critical for parameters satisfying 𝑑p+𝑑kq =

1, implying qc ≥ (1 − 𝑑p)∕𝑑k
for p ∈ (0, 𝑑−1). By means of a useful coupling technique it can be

proved that this inequality is strict (see section 3 of [17]).

We study the asymptotic behavior of qc as the length k of long edges is taken to infinity,

when p < 𝑑
−1

(that is, there is no percolation using only short edges). Since we have that qc(p, k, 𝑑) ≤
qc(0, k, 𝑑) = 𝑑

−k
for any p ≥ 0, we readily obtain that qc

k→∞
−−−−−→ 0. We find the two first asymptotic

terms in this convergence (for an illustration of the curve see Figure 1).

Theorem 1.1. Assume p𝑑 < 1. Then, as k → ∞,

qc(p, k, 𝑑) = (1 − p𝑑) ⋅ 1

𝑑k +
(1 − p𝑑)2p2

𝑑

1 − p2𝑑
⋅

1

𝑑2k + o
(

1

𝑑2k

)
.

FIGURE 1 (0, 𝑑−1) ∋ p → qc(p, k, 𝑑) lies strictly above the dotted line, which has equation 𝑑p + 𝑑
kq = 1.
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522 LIMA ET AL.

The proof relies on comparisons between exploration processes of our percolation cluster, on the

one hand, and multitype branching processes, on the other hand. With such comparisons at hand, many

results from the theory of multitype branching processes can be applied to the percolation cluster; in

the following theorem we collect a few that we find particularly noteworthy. Let Xn denote the number

of vertices of height n in 𝒞p,q.

Theorem 1.2.

(i) If q > qc, then there exists a constant 𝜌 = 𝜌(p, q) and a nonnegative random variable Y such
that P(Y > 0) > 0 and

lim
n→∞

Xn
𝜌n = Y a.s.

(ii) If q < qc, then for each i ≥ 0 the limit

P(i) ∶= lim
n→∞

P(Xn = i|Xn ≠ 0)

exists. Moreover,
∑∞

i=0
P(i) = 1.

(iii) Assume that p ∈ [0, 𝑑−1] and q = qc. Then, 𝒞p,q rooted at o and conditioned on hav-
ing more than n vertices converges locally as n → ∞ to a random rooted graph (in the
Benjamini–Schramm sense [4]).

We will recall the meaning of Benjamini–Schramm local convergence of rooted graphs in

Section 4.1.

1.3 Discussion of proofs and organization of the article

The proofs of both theorems rely on comparisons with multitype branching processes. In Section 2 we

give an overview of multitype branching processes, with the aim of fixing notation, listing common

regularity and positivity assumptions on the offspring distribution, and reviewing key related objects

(the mean offspring matrix and its Perron–Frobenius eigenvalue).

In Section 3 we prove Theorem 1.1. The main idea is to explore the percolation cluster by repeating

a two-stage procedure which takes as input a set B of vertices (all of which have a common ancestor

at distance smaller than k away), first explores its “short cluster” (that is, the set of vertices that can

be reached from B through open short edges), and secondly reveals all open long edges that start at

this short cluster. The endpoints of these open long edges are then grouped into sets B1,B2, … , to

each of which the procedure is applied again. A similar exploration method was employed in [10]. The

contribution here is to take the analysis of this exploration further by studying a multitype branching

process, where the set of types is the set of all possible “shapes” of the input set. A careful analysis of

the mean offspring matrix of this branching process yields upper and lower bounds to the threshold qc.

By expanding on our method, one could try to deduce higher-order terms in the expansion of qc, see

Remark 3.13.

Finally, in Section 4 we prove Theorem 1.2. This relies on a much simpler exploration method,

which reveals the percolation cluster by incrementing its height one unit at a time. The three parts of

Theorem 1.2 are almost direct applications of corresponding branching process limit theorems, which

we recall in that section.

 10982418, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21104 by U

niversitaet Paris-D
auphine, W

iley O
nline L

ibrary on [24/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LIMA ET AL. 523

2 BASIC FACTS ABOUT MULTITYPE BRANCHING PROCESSES

In this section, we give some basic definitions and notations concerning multitype branching processes.

We refer the reader to [3] for a detailed introduction to this topic.

We let𝒯 be a finite set, representing the space of types for our branching process. Elements of𝒯
will be denoted by lower-case letters such as a and b. The state space of a multitype branching process

with space of types 𝒯 is the set (N0)𝒯 where N0 = N ∪ {0}; elements of this set will be denoted by

Greek letters such as 𝜂 or 𝜉. The interpretation is that 𝜂 ∈ (N0)𝒯 corresponds to a population with 𝜂(a)
individuals of type a, for each a ∈ 𝒯 . We let ea ∈ (N0)𝒯 denote a population with a single individual

of type a.

Next, let p ∶ 𝒯 × (N0)𝒯 → R be a function such that

p(a, 𝜂) ≥ 0 ∀a ∈ 𝒯 , 𝜂 ∈ (N0)𝒯 and

∑

𝜂∈(N
0
)𝒯

p(a, 𝜂) = 1 ∀a ∈ 𝒯 .

We interpret p(a, 𝜂) as the probability that an individual of type a at generation n is replaced by the

population 𝜂 at generation n + 1. In order to avoid certain pathological situations, it is common to

assume that p is such that at least one of the types has positive probability of generating a population

with more than one individual, that is,

p(a, 𝜂) > 0 for some a ∈ 𝒯 and 𝜂 ∈ (N0)𝒯 with

∑

b
𝜂(b) > 1. (⋆)

A multitype branching process with space of types 𝒯 and offspring distribution p is a Markov

chain Z = (Zn)n≥0 on (N0)𝒯 with transition function described as follows. Given that Zn = 𝜂, the

distribution of Zn+1 is equal to the law of

∑

a∈𝒯

𝜂(a)∑

𝓁=1

𝜒a,𝓁 ,

where (𝜒a,𝓁 ∶ a ∈ 𝒯 , 𝓁 ∈ N) are independent random variables with 𝜒a,𝓁 ∼ p(a, ⋅) for each a,𝓁 for

each a,𝓁 (and the second summation above should be understood as zero if 𝜂(a) = 0). We refer to Zn
as the population at generation n.

We say that the multitype branching process Z goes extinct if the event that Zn = (0, … , 0) for

some n occurs; otherwise we say that it survives. We denote its survival probability by

𝜁(a) = P(Z survives|Z0 = ea), a ∈ 𝒯 .

With some abuse of notation, we can define a function from (N0)𝒯 to R, also denoted 𝜁 , by letting

𝜁(𝜂) ∶= P(Z survives|Z0 = 𝜂) = 1 −
∏

a∈𝒯
(1 − 𝜁(a))𝜂(a), 𝜂 ∈ (N0)𝒯 . (1)

We next define the mean offspring matrix

M(a, b) ∶= E[Z1(b)|Z0 = ea], a, b ∈ 𝒯 . (2)
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524 LIMA ET AL.

A common assumption about this matrix is that

there exists n ∈ N such that Mn(a, b) > 0 for all a, b ∈ 𝒯 . (P)

If M satisfies (P), then by the Perron–Frobenius theorem it has a maximal eigenvalue 𝜌which is positive

and simple.

For the rest of this section, we assume that both (⋆) and (P) hold; moreover, all the multitype

branching processes that we consider in the rest of the article will satisfy both assumptions. When

they are in place, the following holds. If 𝜌 ≤ 1 we have 𝜁(a) = 0 for all a ∈ 𝒯 , whereas if 𝜌 > 1

we have 𝜁(a) > 0 for all a ∈ 𝒯 (see for example chapter V of [3]). We call the process supercritical,

critical or subcritical if 𝜌 > 1, 𝜌 = 1 or 𝜌 < 1 respectively.

Finally, let us mention that, in place of a stochastic process (Zn)n≥0 on (N0)𝒯 , a natural way to

represent a multitype branching process is by means of a (random, marked, unoriented) tree, which

we will call the family tree of the process, denoted 𝜏. The construction is as follows: each individual

of type a in Z is represented by a vertex with mark a in 𝜏, and an (unoriented) edge is placed for each

pair {parent, child}. In case the initial population of Z has a single individual, then 𝜏 consists of a

single connected tree (which is infinite if and only if Z survives). More generally, an initial population

with m individuals would give rise to m disconnected trees, but we will not need to consider this case.

The random tree 𝜏 is sometimes referred to as a multitype Galton–Watson tree.

3 ASYMPTOTICS ON LENGTH OF LONG EDGES

The goal of this section is proving Theorem 1.1. Before going back to our percolation model on T, we

prove some results about transformations on multitype branching processes, and the effects of these

transformations on the survival probability. This is done in Section 3.1; there, the main result we are

after is Lemma 3.3 below. We will then appeal to this result when analyzing the mean offspring matrix

associated to a branching process that arises when exploring the percolation cluster, in Section 3.2.

3.1 Preliminary results on branching processes

We will now prove some auxiliary results concerning two comparison processes obtained from a

multitype branching process.

Let Z = (Zn)n≥0 be a multitype branching process with set of types𝒯 and offspring distribution p .

Let I ⊊ 𝒯 be a strict subset of the set of types. Define a new multitype branching process X =
(Xn)n≥0 with same set of types𝒯 , and offspring distribution p̃ given as follows. For each a ∈ 𝒯, the

distribution p̃(a, ⋅) on (N0)𝒯 is the distribution of

∑

b∉I
𝜒(b) ⋅ eb +

∑

b∈I

𝜒(b)∑

𝓁=1

𝜒
′
b,𝓁 ,

where

𝜒 ∼ p(a, ⋅) and 𝜒
′
b,𝓁 ∼ p(b, ⋅) for all b ∈ I, 𝓁 ∈ N,

all these variables being taken independently. In words, this is described as follows. Fix an individual of

type a in some generation of X. Then, to sample the population obtained as offspring of this individual,
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LIMA ET AL. 525

we first sample 𝜒 ∼ p(a, ⋅) , according to the law of the offspring of type a in the original process Z. The

portion of the population 𝜒 whose type does not belong to I is left unaltered. Next, each individual in 𝜒

of type b ∈ I is replaced by a further offspring sampled (independently) according to the law p(b, ⋅) .
All these populations are then combined together.

The following can be easily proved with the aid of the family tree of Z; we omit the details.

Lemma 3.1. Let Z, I and X be as above. We then have, for any 𝜂 ∈ (N0)𝒯 ,

P(Z survives|Z0 = 𝜂) = P(X survives|X0 = 𝜂).

We now turn to the description of our second comparison process. Again let Z be a multitype

branching process with set of types 𝒯 and offspring distribution p . Let a⋆ ∈ 𝒯 be a distinguished

type, and assume that there exists a function 𝜆 ∶ 𝒯 → N with 𝜆(a⋆) = 1 and such that

P(Z survives|Z0 = ea) ≤ P(Z survives|Z0 = 𝜆(a) ⋅ ea
⋆
) for all a ∈ 𝒯 , (3)

that is, the process has at least as high a chance of surviving when started from a population of 𝜆(a)
individuals of type a⋆ than it would if started with a single individual of type a. We now define a

(one-type) branching process (Yn)n≥0 with Y0 = 1 and offspring distribution equal to the law of

∑

a∈𝒯
𝜆(a) ⋅ 𝜒(a), where 𝜒 ∼ p(a⋆, ⋅).

We then have:

Lemma 3.2. Let Z, a⋆, 𝜆 and (Yn) be as above. If (Yn) goes extinct with probability one, then Z
started from Z0 = ea

⋆
also goes extinct with probability one.

Proof. Recall the definition of 𝜁 from (1), and define 𝜁(a) = 1−𝜁(a) for a ∈ 𝒯 and 𝜁(𝜂) = 1−𝜁(𝜂)
for 𝜂 ∈ (N0)𝒯 . Note that (3) can then be written

𝜁 (a) ≥ 𝜁(𝜆(a) ⋅ ea
⋆
)
(1)
= 𝜁(a⋆)𝜆(a). (4)

With some abuse of notation, we lift 𝜆 to a function on (N0)𝒯 by letting

𝜆(𝜂) ∶=
∑

a∈𝒯
𝜂(a) ⋅ 𝜆(a), 𝜂 ∈ (N0)𝒯 ,

and note that, for any 𝜂,

𝜁(𝜂)
(1)
=

∏

a∈𝒯
(𝜁 (a))𝜂(a)

(4)
≥

∏

a∈𝒯
(𝜁(a⋆))𝜆(a)⋅𝜂(a) = (𝜁(a⋆))𝜆(𝜂).

We then have

𝜁(a⋆) = E[𝜁(Z1)|Z0 = ea
⋆
] ≥ E[(𝜁(a⋆))𝜆(Z1

)|Z0 = ea
⋆
] = E[(𝜁 (a⋆))Y1 ]. (5)

Let G(s) ∶= E[sY
1 ] be the probability generating function of the offspring distribution of (Yn). It

is easy to check recursively that
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526 LIMA ET AL.

E
[
sYn

]
= G(n)(s),

where G(n)
is the n-fold composition of G. Note that for s = 𝜁(a⋆), (5) gives s ≥ G(s), which can be

iterated (since G is nondecreasing) to s ≥ G(n)(s) for any n. Hence,

𝜁(a⋆) ≥ G(n)(𝜁(a⋆)) = E[(𝜁(a⋆))Yn ]
(1)
= E[𝜁 (Yn ⋅ ea

⋆
)].

Now, if (Yn) goes extinct almost surely, then Yn → 0 almost surely as n → ∞, so the right-hand side

above converges to 1 as n → ∞, so 𝜁(a⋆) = 1. ▪

We now give the final form of the comparison result that will be used in the following

subsection.

Lemma 3.3. Let Z = (Zn)n≥0 be a multitype branching process with set of types 𝒯 , offspring
distribution p , and mean offspring matrix M. Let a⋆ ∈ 𝒯 and I ⊆ 𝒯 ⧵ {a⋆}, and assume that Z0 =
ea

⋆
.

(a) If

M(a⋆, a⋆) +
∑

a∈I
M(a⋆, a) ⋅M(a, a⋆) > 1, (6)

then Z survives with positive probability;
(b) Let 𝜆 ∶ 𝒯 → N be a function satisfying 𝜆(a⋆) = 1 and (3). Then,

∑

a∉I
M(a⋆, a) ⋅ 𝜆(a) +

∑

a∈I

∑

b∈𝒯
M(a⋆, a) ⋅M(a, b) ⋅ 𝜆(b) < 1, (7)

then Z goes extinct almost surely.

Proof. For (a), first define a process X as the one of Lemma 3.1, start it from a single individual of

type a⋆, and modify its offspring distribution p̃(a⋆, ⋅) so that all individuals of type different from a⋆ are

discarded. This gives rise to a one-type branching process which is smaller than X; its mean offspring

is the expression on the left-hand side of (6), so it is supercritical if this expression is larger than 1.

This proves that (6) implies that X survives with positive probability, so by Lemma 3.1, the same holds

for Z.

For (b), take the same process X as above. Note that, by Lemma 3.1, condition (3) holds with X
in place of Z. We then define a one-type branching process process (Wn)n≥0 from X in the same way

that the process (Yn) of Lemma 3.2 is constructed from Z (that is, in the offspring population, any

individual of type a is replaced by 𝜆(a) individuals of type a⋆). Then, the mean offspring of (Wn) is

equal to the left-hand side of (7). If this number is smaller than 1, then (Wn) goes extinct with proba-

bility 1, so (by Lemma 3.2) X goes extinct with probability 1, so (by Lemma 3.1) Z goes extinct with

probability 1. ▪

3.2 First branching process representation of percolation cluster

We now go back to the study of our percolation model on T𝑑,k. For the rest of this section, we fix p
and 𝑑 with p𝑑 < 1, so that there is no percolation using only short edges.
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LIMA ET AL. 527

We first introduce some notation and terminology. For a vertex v ∈ V define the function h to be

its distance (in short edges) from the root:

h(o) ∶= 0, h((v1, … , vm)) ∶= m,

and for a set A ⊆ V let

h(A) ∶= sup

v∈A
h(v).

For any v ∈ V let Tv = (Vv
,Ev) and Γv = (Vv

Γ,Ev
Γ) be the subgraphs of T induced by the vertex sets

Vv = {v ⋅ s ∶ s ∈ V}, (8)

Vv
Γ = {v ⋅ s ∶ s ∈ V , h(s) < k}, (9)

that is the subgraph rooted at v and the subgraph of height k − 1 rooted at v.

We now define a property of sets of vertices that will be of interest in the following.

Definition. A set B ⊆ V is called admissible if there exists a (necessarily unique) vertex u ∈ B such

that B ⊆ Vu
Γ. In this case, we say that u is the base of B, and write u = b(B) . The type of B is defined

as

t(B) ∶= {v ∈ Vo
Γ ∶ u ⋅ v ∈ B},

that is, t(B) is the set of vertices which must be concatenated with u in order to produce B.

In what follows, we let B ⊆ V be an admissible set. We define 𝒞 B = 𝒞 B(𝜔) as the “cluster of B”,

that is, the set of vertices that can be reached by an oriented open path from some vertex in B (with

the understanding that B ⊆ 𝒞 B
). Note that

𝒞 B =
⋃

x∈B
𝒞 {x}

. (10)

Recall that we have defined𝒞 = 𝒞 {o}
as the cluster of the root. The following inequality will be very

useful in the sequel:

P
(
|𝒞 B| <∞

)
≥ P(|𝒞 | < ∞)|B|. (11)

This can be seen from (10), by revealing the clusters 𝒞 {x}
, for x ∈ B, one by one, and using the FKG

inequality.

We now let 
B
s be the “short cluster of B”, that is, the set of vertices that can be reached by

an oriented open path that starts from some vertex in B and uses only edges of Es . We again adopt

the convention that B ⊆ 
B
s . Note that 

B
s ⊆ 𝒞 B

. Now, suppose that we have revealed 
B
s (this

involves querying short edges only) and, once this is done, we reveal all open long edges that start at

some point of 
B
s . Let 

B
𝓁 be the set of vertices that are obtained as endpoints of these long edges.

Equivalently,


B
𝓁 ∶=

{
r ∈ 𝒞 B ⧵ B

s ∶ r is the endpoint of some

open long edge started from 
B
s

}
.
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528 LIMA ET AL.

We write 
o
s and 

o
𝓁 instead of


{o}
s and 

{o}
𝓁 and 

{o}
𝓁 . The following lemma is an easy consequence

of the assumption that B is admissible, so we omit the proof.

Lemma 3.4. The following statements hold:

(i) for any u ∈ B
𝓁 , we have Vu ∩ B

s = ⌀, and
(ii) for any u, v ∈ B

𝓁 with v ∈ Vu, we have h(v) − h(u) < k.

We will now decompose 
B
𝓁 in a very useful manner. To do so, first declare that two vertices u, v ∈


B
𝓁 are related if there exists w ∈ B

𝓁 such that u, v ∈ Vw
; it is readily seen that this is an equiva-

lence relation. Then let B
be the collection of equivalence classes induced by this relation. Again, we

write o
instead of {o}.

Lemma 3.5. For any admissible set B,

(i) every B′ ∈ B is admissible, and
(ii) the sets Vb(B′) , with B′ ranging over B, are disjoint, and disjoint from B

s .

Proof. It readily follows from the definition of the equivalence relation given above that for

each B′ ∈ B
there is a unique vertex u⋆(B′) ∈ B′ such that B′ ⊆ Vu

⋆
(B′)

, and also that if B′,B′′ ∈ B

are distinct, then Vu
⋆
(B′)

and Vu
⋆
(B′′)

are disjoint. The statements of the lemma readily follow from these

considerations and Lemma 3.4. ▪

For an example of a short cluster 
o
s and the decomposition of 

o
𝓁 see Figure 2.

Let the set 𝒜 of possible types be the set of all admissible sets with base equal to the root o,

𝒜 = {A ⊆ Vo
Γ ∶ o ∈ A}.

The set 𝒜 will be the space of types of the multitype branching process that we will soon define. We

emphasize that, although in Sections 2 and 3.1 we represented types by lowercase letters (a, b), here

we will represent them by uppercase letters (A, B), since they are themselves sets.

FIGURE 2 An example of 𝒞 ,
o
s and 

o
𝓁

on T2,3. In this case o = {B1,B2,B3}
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LIMA ET AL. 529

Corollary 3.6. Let B ⊆ V be admissible. Condition on B
s and B

𝓁 (so that B is also determined).
Then, the clusters

𝒞 B′ ∶ B′ ∈ B

are independent. Moreover, if B′ ∈ B with b(B′) = u and t(B′) = A , then the distribution of

{v ∶ u ⋅ v ∈ 𝒞 B′ }

is equal to the (unconditioned) distribution of 𝒞 A
.

Proof. Fix U,U′
⊆ V for which the event {B

s = U, 
B
𝓁 = U′} has positive probability, and condi-

tion on this event. Note that its occurrence can be decided by inspecting the statuses of all edges, short

and long, that begin in U. By Lemma 3.5, none of these edges belong to any of the subtrees induced

by the vertex sets

Vb(B′) ∶ B′ ∈ B
.

The claimed independence then follows from the fact, also given in Lemma 3.5, that these subtrees are

disjoint. The claimed equality of distributions follows from the simple observation that the distribution

of open edges in {⟨u ⋅ v, u ⋅ v′⟩ ∶ ⟨v, v′⟩ ∈ E} is equal to that of {⟨v, v′⟩ ∶ ⟨v, v′⟩ ∈ E}, for any

u ∈ V . ▪

We now apply Lemma 3.5 and Corollary 3.6 recursively to obtain important consequences. Let-

ting B ⊆ V be admissible, define the collections 
B
0
,

B
1
, … of admissible sets recursively by

letting 
B
0
= {B} and


B
n+1

=
⋃

B′∈B
n


B′
, n ≥ 0.

Then, Lemma 3.5 gives that the sets

Vb(B′) ∶ B′ ∈ B
n , n ∈ N0

are pairwise disjoint. Moreover, we have the disjoint union

𝒞 B =
∞⋃

n=0

⋃

B′∈B
n


B′
s . (12)

For each n ∈ N0, we now define Zn ∈ (N0)𝒜 by

Zn(A) ∶= |{B′ ∈ B
n ∶ t(B′) = A}|, A ∈ 𝒜 ,

that is, Zn(A) is the number of sets in n that have type A. This gives a stochastic process Z = (Zn)n≥0

with state space N
𝒜
0

, and as a consequence of Corollary 3.6 we obtain:

Corollary 3.7. The process Z = (Zn)n≥0 is a multitype branching process with set of types equal
to 𝒜 , and initial population consisting of one individual with type t(B) .

 10982418, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21104 by U

niversitaet Paris-D
auphine, W

iley O
nline L

ibrary on [24/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



530 LIMA ET AL.

We observe that, due to our assumption that p𝑑 < 1, almost surely all the short clusters that appear

on the right-hand side of (12) are finite. It then readily follows that

P(|𝒞 B| = ∞) = P(Z survives) = 𝜁(B). (13)

It is easy to see that the mean offspring matrix M of Z, defined as in (2), satisfies the conditions (⋆)

and (P), since regardless of B, already in generation 1 all types can occur with positive probability.

3.3 Analysis of mean offspring matrix

Our interest is now in studying the behavior of qc = qc(p, k, 𝑑) as k → ∞. Specifically, we parametrize

q = 1 − p𝑑
𝑑k + s

𝑑2k , (14)

define

s⋆ =
(1 − p𝑑)2p2

𝑑

1 − p2𝑑
,

and will prove that, on the one hand, there is no percolation when s < s⋆ and k is large, and

on the other hand, there is percolation when s > s⋆ and k is large. Although most of the defi-

nitions we give below will depend on p, 𝑑, k and q (or s), we will omit this dependence from the

notation.

Proposition 3.8. If s > s⋆, then for k large enough we have

M({o}, {o}) +
∑

B∶|B|=2

M({o},B) ⋅M(B, {o}) > 1. (15)

If s < s⋆, then for k large enough we have

∑

B∶|B|≠2

M({o},B) ⋅ |B| +
∑

B∶|B|=2

∑

B′
M({o},B) ⋅M(B,B′) ⋅ |B′| < 1. (16)

We postpone the proof of this result, and for now show how it almost immediately gives

Theorem 1.1

Proof of Theorem 1.1. Recall from (13) that percolation occurs with positive probability if and only

if Z has positive probability of surviving. The result then follows from combining Lemma 3.3 with

Proposition 3.8. ▪

In the rest of this section, we prove Proposition 3.8. Several preliminary results will be needed. We

start with some simple observations.

Lemma 3.9. If k is large enough, then for any A ∈ 𝒜 we have

∑

A′
M(A,A′) ⋅ |A′| ≤ 2|A| for all A ∈ 𝒜 . (17)
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LIMA ET AL. 531

Proof. For any A ∈ 𝒜 we have

∑

A′
M(A,A′) ⋅ |A′| = E

[
|A
𝓁 |
]
≤ q𝑑k ⋅ E [|s(A)|] . (18)

Next, note that

E
[
|A

s |
]
≤ |A| ⋅ E

[
|o

s |
]
= |A|

1 − p𝑑

Using (14), the desired inequality then holds for k large enough that q𝑑k∕(1 − p𝑑) < 2, ▪

Next, fix A ∈ 𝒜 . We observe that M({o},A) is equal to the expected number of vertices v satisfying

the following properties:

(i) v ∈ o
𝓁;

(ii) v is the unique vertex of 
o
𝓁 in the path (of short edges) from o to v;

(iii) we have the equality of sets


o
𝓁 ∩ Vv = {v ⋅ u ∶ u ∈ A}.

We now define a quantity M(A) as the expected number of vertices satisfying a weaker list of

requirements (specifically, we remove requirement (ii) and replace the set equality in (iii) by a set

inclusion):

Definition. Given A ∈ 𝒜 , let M(A) be the expected number of vertices v ∈ o
𝓁 such that


o
𝓁 ∩ Vv

⊇ {v ⋅ u ∶ u ∈ A}.

Note in particular that for A = {o}, we have

M({o}) = E[|o
𝓁|].

Also note that M({o},A) ≤ M(A) for all A, and a moment’s thought about the two quantities leads to

the equality

M({o}, {o}) = M({o}) −
∑

A∶|A|≥2

M({o},A) ⋅ |A|. (19)

We now state three lemmas that we will need for the proof of Proposition 3.8.

Lemma 3.10 (Formula for M). For any A ∈ 𝒜 we have

M(A) = (1 − pk−h(A)) ⋅ 𝑑
k ⋅ q|A| ⋅ ph(A)

1 − p𝑑
. (20)

In particular, we have

𝑑
k ⋅ (M({o}) − 1)

k→∞
−−−−−→ s

1 − p𝑑
(21)

and, for A ∈ 𝒜 with |A| = 2,

lim
k→∞

𝑑
k ⋅M(A) = (1 − p𝑑) ⋅ ph(A)

. (22)
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532 LIMA ET AL.

Lemma 3.11 (Estimate for types with cardinality above 2). We have

𝑑
k
∑

A∶|A|≥3

M(A) ⋅ |A|2
k→∞
−−−−−→ 0. (23)

Lemma 3.12 (Estimate for types with cardinality 2). Let A ∈ 𝒜 with |A| = 2. We have

𝑑
k ⋅M({o},A)

k→∞
−−−−−→ (1 − p𝑑) ⋅ ph(A)

. (24)

Moreover,

∑

A′
M(A,A′) ⋅ |A′| ≤ q ⋅ 𝑑k ⋅ (2 − ph(A))

1 − p𝑑
(25)

and

M(A, {o})
k→∞
−−−−−→ 2 − ph(A)

. (26)

We postpone the proofs of these three lemmas, and for now we show how they can be combined

to prove Proposition 3.8.

Proof of Proposition 3.8. Using (19) and (21) we have

M({o}, {o}) = 1 + s
(1 − p𝑑)𝑑k −

∑

A∶|A|≥2

M({o},A) ⋅ |A| + o
(

1

𝑑k

)
.

Combining this with the inequality M({o},A) ≤ M(A) and Lemma 3.11, we obtain

M({o}, {o}) = 1 + s
(1 − p𝑑)𝑑k − 2

∑

A∶|A|=2

M({o},A) + o
(

1

𝑑k

)
. (27)

With this at hand, the left-hand side of (15) can be written

1 + 1

𝑑k

[
s

1 − p𝑑
+

∑

A∶|A|=2

𝑑
k ⋅M({o},A) ⋅ (M(A, {o}) − 2) + o(1)

]
. (28)

By (24) and (26), for any A with |A| = 2 we have

𝑑
k ⋅M({o},A) ⋅ (M(A, {o}) − 2)

k→∞
−−−−−→ −(1 − p𝑑) ⋅ p2h(A)

.

Moreover, using M({o},A) ≤ M(A) again, together with (17) and (20), we have the domination

∑

A∶|A|=2

|||𝑑
k ⋅M({o},A) ⋅ (M(A, {o}) − 2)|||

≤

∑

A∶|A|=2

𝑑
k ⋅

𝑑
k ⋅ q2 ⋅ ph(A)

1 − p𝑑
⋅ (2|A| − 2) = 2𝑑

2k

1 − p𝑑
⋅
(

1 − p𝑑
𝑑k + s

𝑑2k

)2

⋅
k−1∑

h=1

(p𝑑)h,
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LIMA ET AL. 533

which is bounded from above uniformly in k, by the choice of q in (14) and p𝑑 < 1. Hence, by

dominated convergence, the term inside the square brackets in (28) converges to

s
1 − p𝑑

+
∞∑

h=1

𝑑
h ⋅

(
−(1 − p𝑑) ⋅ p2h) = s

1 − p𝑑
− (1 − p𝑑) ⋅ p2

𝑑

1 − p2𝑑
. (29)

This is strictly positive when s > s⋆, so the expression in (28) is larger than one when s > s⋆ and k is

large enough.

Next, by Lemma 3.11, the left-hand side of (16) is

M({o}, {o}) +
∑

B∶|B|=2

∑

B′
M({o},B) ⋅M(B,B′) ⋅ |B′| + 1

𝑑k ⋅ o(1).

Again using (27), this is equal to

1 + 1

𝑑k

[
s

1 − p𝑑
+

∑

A∶|A|=2

𝑑
k ⋅M({o},A) ⋅

(
−2 +

∑

A′
M(A,A′) ⋅ |A′|

)
+ o(1)

]
.

Using (25), this is bounded from above by

1 + 1

𝑑k

[
s

1 − p𝑑
+

∑

A∶|A|=2

𝑑
k ⋅M({o},A) ⋅

(
−2 + q ⋅ 𝑑k ⋅ (2 − ph(A))

1 − p𝑑

)
+ o(1)

]
. (30)

Using the fact that q = (1 − p𝑑)𝑑−k + s𝑑−2k
and (24), we have, for any A with |A| = 2:

𝑑
k ⋅M({o},A) ⋅

(
−2 + q ⋅ 𝑑k ⋅ (2 − ph(A))

1 − p𝑑

)
k→∞
−−−−−→ −(1 − p𝑑) ⋅ p2h(A)

.

Arguing using dominated convergence as before, the term inside the square brackets in (30) converges

to the same limit as in (29), which is negative when s < s⋆. This completes the proof. ▪

We now turn to the proofs of the three lemmas.

Proof of Lemma 3.10. Fix A ∈ 𝒜 and v ∈ V with h(v) ≥ k. Write v = (v1, … , vn), with n = h(v),
and let v(i) ∶= (v1, … , vi) for 1 ≤ i ≤ n. The event that {v ⋅ u ∶ u ∈ A} ⊆ o

𝓁 occurs if and only if:

1 vertices v(1), … , v(n−k+h(A)) are all in 
o
s ;

2 vertex v is not in s({o}) ;
3 all the long edges starting from the set {o, v(1), … , v(n−k+h(A))} and ending at the set {v ⋅u ∶ u ∈ A}

are open.

The first event says that every short edge along the path o, v(1), … , v(n−k+h(A)) is open, this has

probability ph(v)+h(A)−k
. The second one occurs, if there is at least one closed short edge along the path

v(n−k+h(A)), … , v, this has probability (1 − pk−h(A)). Finally, the third event says that each long edge

pointing to the set {v ⋅ u ∶ u ∈ A} is open, which has probability q|A|. Observe that these three events

are independent, implying

Pp,q({v ⋅ u ∶ u ∈ A} ⊆ o
𝓁) = ph(v)+h(A)−k ⋅ (1 − pk−h(A)) ⋅ q|A|.
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534 LIMA ET AL.

The result follows from summing this over all v with h(v) ≥ k:

∑

v∶h(v)≥k
ph(v)+h(A)−k ⋅ (1 − pk−h(A)) ⋅ q|A|

= (1 − pk−h(A)) ⋅ q|A| ⋅ ph(A)−k ⋅
∞∑

h=k
𝑑

hph = (1 − pk−h(A)) ⋅ 𝑑
k ⋅ q|A| ⋅ ph(A)

1 − p𝑑
.

This proves (20).

For (21), we combine (20) with the equality q = (1 − p𝑑)𝑑−k + s𝑑−2k
to get

𝑑
k ⋅ (M({o}) − 1) = 𝑑

k ⋅
(
(1 − pk) ⋅ 𝑑

k

1 − p𝑑
⋅
(

1 − p𝑑
𝑑k + s

𝑑2k

)
− 1

)

= 𝑑
k ⋅

(
s

𝑑k ⋅ (1 − p𝑑)
− pk − s ⋅ pk

𝑑k ⋅ (1 − p𝑑)

)
k→∞
−−−−−→ s

1 − p𝑑
,

since pk = o(1∕𝑑k).
Similarly, for (22), for |A| = 2 we use 𝑑

2k ⋅ q2 → (1 − p𝑑)2 to obtain

𝑑
k ⋅M(A) = 𝑑

k ⋅ (1 − pk−h(A)) ⋅ 𝑑
k ⋅ q2 ⋅ ph(A)

1 − p𝑑
k→∞
−−−−−→ (1 − p𝑑) ⋅ ph(A)

.

▪

Proof of Lemma 3.11. For m, h ∈ N, let 𝜂(m, h) denote the number of sets A ∈ 𝒜 with |A| = m
and h(A) = h. Keeping in mind that any A ∈ 𝒜 contains {o}, we bound

𝜂(m, h) ≤
(
𝑑 + · · · + 𝑑

h

m − 1

)
≤
(𝑑 + · · · + 𝑑

h)m−1

(m − 1)!
≤

𝑑
(h+1)(m−1)

(m − 1)!
,

since (𝑑h+1 − 1)∕(𝑑 − 1) ≤ 𝑑
h+1

. Then, for each m ∈ N,

k−1∑

h=1

∑

A∶|A|=m,

h(A)=h

M(A)
(20)
≤

k−1∑

h=1

𝜂(m, h) ⋅ 𝑑
kqmph

1 − p𝑑
≤

𝑑
kqm∑k−1

h=1
(p𝑑m−1)h+1

p(1 − p𝑑)(m − 1)!
.

We can bound the sum in the numerator by k− 1 in case p𝑑m−1 ≤ 1 and by (k− 1)(p𝑑m−1)k otherwise,

and then, bounding a maximum by a sum,

k−1∑

h=1

(p𝑑m−1)h+1
≤ (k − 1) ⋅ (1 + (p𝑑m−1)k).

We then obtain

𝑑
k
∑

A∶|A|≥3

M(A) ⋅ |A|2 ≤ (k − 1)𝑑2k

p(1 − p𝑑)
∑

m≥3

m2qm

(m − 1)!
⋅
(
1 + pk

𝑑
k(m−1))

≤
(k − 1)𝑑2kq3

p(1 − p𝑑)
∑

m≥3

m2

(m − 1)!
+ (k − 1)𝑑2kqpk

p(1 − p𝑑)
∑

m≥3

m2

(m − 1)!
⋅ (q𝑑k)m−1

.
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LIMA ET AL. 535

Using q = O
(

1

𝑑k

)
, pk = o

(
1

𝑑k

)
and

∑
m≥3

m2

(m−1)!
<∞, we see that this tends to zero as k → ∞. ▪

Proof of Lemma 3.12. Fix A with |A| = 2. We note that, similarly to (19), we have

M(A) ≥ M({o},A) ≥ M(A) −
∑

A′∶|A′|≥3

(
|A′|

2

)
⋅M({o},A′). (31)

The convergence (24) now follows from combining this with (22) and (23).

To prove the remaining statements, we write A = {o, u} and compute

E
[
|A

s |
]
= E

[
|o

s |
]
+ E

[
|{u}s |

]
−
∑

v∈Vu

P (v ∈ o
s ))

= 2 − ph(u)

1 − p𝑑
= 2 − ph(A)

1 − p𝑑
.

We then have

M(A, {o}) ≤
∑

A′
M(A,A′) ⋅ |A′| ≤ q𝑑k ⋅ E[|A

s |] = q𝑑k ⋅
2 − ph(A)

1 − p𝑑
.

This already proves (25). For (26), we need two additional statements. First,

q𝑑k ⋅ E[|A
s |]

k→∞
−−−→ 2 − ph(A)

.

This is an immediate consequence of q = (1 − p𝑑)𝑑−k + s𝑑−2k
. Second,

q𝑑k ⋅ E[|A
s |] −M(A, {o})

k→∞
−−−→ 0,

that is the expected number of open long edges that start at 
A
s , but do not contribute to the value

of Z1({o}) tends to zero as k → ∞. These are exactly the long edges that either start and end at 
A
s or

that end at a vertex belonging to a set of A
which is not of type {o}. Using 

A
s ⩽ |A|∕(1 − p𝑑) it is

easy to see that the expected number of the former type of edges can be bounded from above by

2pkq
1 − p𝑑

k→∞
−−−−−→ 0,

and by an argument similar to the proof of Lemma 3.11 the expected number of the latter type of edges

can be bounded from above by

k−1∑

h=1

𝜂(m, h) ⋅ 2𝑑
kqmph

1 − p𝑑
k→∞
−−−−−→ 0.

We omit the details. ▪

Remark 3.13. One could try to deduce higher order terms in the expansion of qc by examining the

evolution of the multitype branching process Z more precisely. Namely, to obtain the next term, one

would need a statement similar to Proposition 3.8 summing over all sets B with |B| = 2 or 3 instead

of sets with cardinality 2. However, the calculations to obtain the corresponding formulas in Lem-

mas 3.10, 3.11 and 3.12 seems to be rather long and tedious, and it is not even clear what the precise

order of the next term would be.
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536 LIMA ET AL.

4 LIMIT THEOREMS

In this section, we prove Theorem 1.2. We will first recall some limit theorems from the literature of

multitype branching processes. We will then give a second branching process representation of the

percolation cluster, and readily obtain the results for the three regimes as stated in Theorem 1.2.

4.1 Limit theorems for multitype branching processes

As in Section 2, we consider a multitype branching process (Zn)n≥0 with set of types 𝒯 , offspring

distribution p and mean offspring matrix M with Perron–Frobenius eigenvalue 𝜌. We continue assum-

ing that conditions (⋆) and (P) hold. We also let 𝜇, 𝜈 ∈ (N0)𝒯 respectively denote left and right

eigenvectors of M corresponding to 𝜌, that is,

∑

a∈𝒯
𝜇(a) ⋅M(a, b) = 𝜌 ⋅ 𝜇(b) ∀b ∈ 𝒯 ,

∑

b∈𝒯
M(a, b) ⋅ 𝜈(b) = 𝜌⋅𝜈(a) ∀a ∈ 𝒯 ; (32)

these eigenvectors are uniquely determined if we require the normalization conditions

∑

a∈𝒯
𝜇(a) = 1,

∑

a∈𝒯
𝜇(a) ⋅ 𝜈(a) = 1. (33)

Moreover, it follows from the Perron–Frobenius Theorem and condition (P) that 𝜇(a) > 0 and 𝜈(a) > 0

for all a ∈ 𝒯 .

The following result is contained in theorem 1 in chapter V, section 6 of [3], concerning the

supercritical regime:

Theorem 4.1. Assume that 𝜌 > 1 and

∑

𝜂

𝜂(b) ⋅ log(𝜂(b)) ⋅ p(a, 𝜂) <∞ for all a, b ∈ 𝒯 .

We then have

lim
n→∞

Zn
𝜌n = Z ⋅ 𝜈 almost surely, (34)

where Z is a nonnegative random variable such that P(Z > 0) > 0 and Z ⋅ 𝜈 is computed entry-wise.

For the subcritical regime, the following statement is contained in theorem 2 in chapter V, section

4 of [3]:

Theorem 4.2. If 𝜌 < 1, then for each a ∈ 𝒯 and 𝜂 ∈ (N0)𝒯 , the limit

Q(𝜂) ∶= lim
n→∞

P(Zn = 𝜂|Z0 = ea, Zn ≠ 0)

exists and is independent of a. Moreover,
∑

𝜂
Q(𝜂) = 1.
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LIMA ET AL. 537

For the result concerning the critical case 𝜌 = 1, we first introduce some terminology, starting

with convergence in distribution (in the sense of Benjamini and Schramm [4]) for sequences of random

rooted trees. A rooted tree �̇� = (𝜏,) is a tree 𝜏 with a distinguished vertex . For each m ∈ N0, let us

denote by Bm(�̇�) the rooted tree obtained as the subgraph of 𝜏 induced by all vertices at graph distance

at most m from , rooted again at . We say that a sequence of random rooted trees �̇�n converges in

distribution to a random rooted tree �̇� if, for any m ∈ N0 and any deterministic finite rooted tree (t, ō),
we have

P(Bm(�̇�n) ≅ (t, ō))
n→∞
−−−−−→ P(Bm(�̇�) ≅ (t, ō)),

where ‘≅’ denotes graph isomorphism between rooted trees.

We now recall some facts about convergence in distribution of family trees of critical branching

processes. In [8], Kesten introduced a random tree with an infinite spine that is the local limit in

distribution of the family tree of a critical (single-type) branching process conditioned on reaching

generation n, as n →∞. In [1] the authors gave a necessary and sufficient condition for the convergence

in distribution of a family tree to the corresponding Kesten’s tree. Later this result was generalized for

multitype branching processes in [2] and [15]. The following follows from theorem 3.1 in [15]:

Theorem 4.3. Assume that 𝜌 = 1 and that there exists 𝜃 > 0 such that

∑

𝜂∈(N
0
)𝒯

p(a, 𝜂) ⋅ exp

{
𝜃 ⋅

∑

b∈𝒯
𝜂(b)

}
< ∞ for all a ∈ 𝒯 .

Then, the family tree of (Zn)n≥0 conditioned on having more than n vertices converges in distribution,
as n → ∞, to a random rooted tree.

In fact, in [15] a description of the limiting tree is provided: it is again a Galton–Watson tree with

an augmented space of types and an offspring distribution that is obtained from p and the eigenvalues

associated to 𝜌 = 1. We refrain from recalling the details here, since we will not use them.

4.2 Second branching process representation of percolation cluster

We again go back to our percolation model on T = T𝑑,k with parameters p, q ∈ [0, 1]2 and qc =
qc(p, k, 𝑑). Recall that Vo

Γ = {u ∈ V ∶ 0 ≤ h(u) < k}.

Definition. Define the random sets

S(v) ∶= {u ∈ Vo
Γ ∶ v ⋅ u ∈ 𝒞 }, v ∈ V .

Let ℬ denote the collection of all nonempty subsets of Vo
Γ and define the process W = (Wn)n≥0

on (N0)ℬ by setting

Wn(A) ∶= |{v ∶ h(v) = n, S(v) = A}|, A ∈ℬ, n ∈ N0.

By considering the exploration process (𝒞 ∩{v ∶ h(v) ≤ k−1+n})n≥0, it is readily seen that W is a

multitype branching process with set of typesℬ. The initial population is given by a single individual

of a random type, with distribution equal to that of 𝒞 ∩ Vo
Γ, and

p(a, 𝜂) = 0 for all 𝜂 ∈ (N0)𝒯 with

∑

b
𝜂(b) > 𝑑, (35)
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538 LIMA ET AL.

that is each individual can generate a population of cardinality at most 𝑑. The mean offspring matrix

of W will (again) be denoted M. We will write Mp,q when we want to make the parameters explicit.

It is not difficult to check that M satisfies the conditions (⋆) and (P) given in Section 2; we leave this

to the reader. Moreover, observe that if M(A,B) > 0 for some A,B ∈ ℬ, then A determines B up to

height k − 2. We again let 𝜌 = 𝜌p,q denote the Perron–Frobenius eigenvalue of Mp,q.

Lemma 4.1. We have

𝜌p,q

⎧
⎪
⎨
⎪⎩

> 1 if q > qc;
= 1 if q = qc;
< 1 if q < qc.

Proof. Note that W survives if and only if 𝒞 is infinite. Moreover, as mentioned earlier, it was

proved in [10] that 𝒞 is almost surely finite when q = qc. This implies that 𝜌p,q > 1 if and only

if q > qc. Also note that the entries of Mp,q depend continuously on (p, q). Since 𝜌p,q is a simple root

of the characteristic equation of this matrix, it depends continuously (in fact smoothly) on the entries

of the matrix, hence 𝜌p,q also depends continuously on (p, q). This implies that 𝜌p,qc = 1.

It remains to prove that 𝜌p,q < 1 when q < qc. To this end, fix (p, q) with q < qc. Also

fix q′ ∈ (q, qc). We construct a standard coupling of the clusters 𝒞p,q and 𝒞p,q′ using independent

Uniform([0, 1]) random variables indexed by the edges of T, {Ue ∶ e ∈ E}. For both𝒞p,q and𝒞p,q′ , we

declare a short edge e to be open if Ue ≤ p. We declare a long edge e to be open for𝒞p,q if Ue ≤ q, and

we declare it to be open for 𝒞p,q′ if Ue ≤ q′. Now, in this same probability space, we define an addi-

tional cluster 𝒞 ∗
, which will satisfy 𝒞p,q ⊆ 𝒞 ∗

⊆ 𝒞p,q′ , and will give rise to a multitype branching

process W∗
with Perron–Frobenius eigenvalue 𝜌

∗
. We will then show that 𝜌p,q < 𝜌

∗ ≤ 1, completing

the proof.

We will define 𝒞 ∗
by recursively defining 𝒞 ∗ ∩ {v ∶ h(v) ≤ n} for each n ≥ k − 1. Start the

recursion by setting

𝒞 ∗ ∩ {v ∶ h(v) ≤ k − 1} = 𝒞p,q ∩ {v ∶ h(v) ≤ k − 1}.

Now assume that𝒞 ∗∩{v ∶ h(v) ≤ n} has been defined. Fix v with h(v) = n+1; let v′ be the parent of v
(so that ⟨v′, v⟩ is a short edge of T) and let v′′ be the ancestor of v at distance k from v (so that ⟨v′′, v⟩
is a long edge of T). We include v in 𝒞 ∗

in any of the following three situations:

(a) v′ ∈ 𝒞 ∗
, and U⟨v′,v⟩ ≤ p;

(b) v′′ ∈ 𝒞 ∗
, and U⟨v′′,v⟩ ≤ q;

(c) v′′ ∈ 𝒞 ∗
, U⟨v′′,v⟩ ∈ (q, q′], U⟨v′′,w⟩ ∈ (q, 1] for all ⟨v′′,w⟩ ∈ E𝓁 , and Vv′′

Γ ∩(
𝒞 ∗ ∩ {u ∈ V ∶ h(u) ∈ [h(v′′), h(v′′) + k − 1]}

)
= {v′′} (that is, no long edge starting at v′′ is

open in𝒞p,q and no descendant of v′′ with height between h(v′′)+1 and h(v)−1 has been included

in 𝒞 ∗
).

Put simply, in an exploration that adds one height unit at a time, the cluster 𝒞 ∗
grows in the

same way as 𝒞p,q, with the exception of rule (c) above, which prescribes that vertices that would

otherwise become leaves are given extra chances (with probability q′−q each) of having (long-distance)

neighbors.

We now replicate Definition 4.2 by letting

S∗(v) ∶= {u ∈ Vo
Γ ∶ v ⋅ u ∈ 𝒞 ∗}, v ∈ V ,

 10982418, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21104 by U

niversitaet Paris-D
auphine, W

iley O
nline L

ibrary on [24/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LIMA ET AL. 539

and defining W∗ = (W∗
n)n≥0 by

W∗
n(A) ∶= |{v ∶ h(v) = n, S∗(v) = A}|, A ∈ℬ, n ∈ N0.

Then, W∗
is also a multitype branching process. Let us denote by

ℬk−1 ∶= {B ∈ℬ ∶ h(v) = k − 1 for all v ∈ B},

that is the subset of types that only contains vertices at height k − 1. By the definition of W
Mp,q({o},B) > 0 implies that B ∈ℬk−1. Observe that for any such B, the long edges {⟨o, o⋅v⟩ ∶ v ∈ B}
are precisely the edges that are given extra chances of being open in 𝒞 ∗

in situation (c). Therefore it

is immediate that the mean offspring matrix of W∗
, denoted M∗

, satisfies:

M∗({o},B) = Mp,q({o},B) + (q′ − q)|B|(1 − q′ + q)𝑑k−|B|
if B ∈ℬk−1,

M∗(A,B) = Mp,q(A,B) otherwise. (36)

We then have

P(W∗
survives) = P(|𝒞 ∗| = ∞) ≤ P(|𝒞p,q′ | = ∞) = 0,

so the Perron–Frobenius eigenvalue 𝜌
∗

of M∗
is at most 1. We will now show that (36) implies that 𝜌

∗
>

𝜌p,q. Let 𝜇, 𝜈 ∶ ℬ → R be left and right eigenvectors of Mp,q associated to the eigenvalue 𝜌p,q, as

in (32) and (33). Recall that all entries of 𝜇 and 𝜈 are strictly positive. Fix any norm || ⋅ || on the space

of matrices. The perturbation theory of Perron–Frobenius eigenvalues (see theorem 8 in chapter 8

of [13]) gives that the Perron–Frobenius eigenvalue of Mp,q + E, where E is a matrix of sufficiently

small norm, is given by

𝜌(Mp,q + E) = 𝜌p,q +
∑

A,B 𝜇(A) ⋅ E(A,B) ⋅ 𝜈(B)
∑

A 𝜇(A) ⋅ 𝜈(A)
+ O(||E||2).

In particular, if E is a non-negative matrix with at least one strictly positive entry, then 𝜌(Mp,q + E) >
𝜌p,q. The result is thus obtained by taking E = M∗ −Mp,q. ▪

Proof of Theorem 1.2. Recall that Xn denotes the number of vertices u ∈ 𝒞p,q with h(u) = n. We

extract Xn from Wn by writing

Xn =
∑

B∈ℬ
Wn(B) ⋅ 𝟙{o ∈ B}.

Assume q > qc. Then, by Lemma 4.1 we have 𝜌 > 1 and by (35) the condition of Theorem 4.1 holds,

yielding 𝜌
−n ⋅Wn

n→∞
−−−−−→ Z ⋅ 𝜈 for some random variable Z with P(Z > 0) > 0. We then obtain

Xn
𝜌n

n→∞
−−−−−→ Z ⋅

∑

B∈ℬ
𝜈(B) ⋅ 𝟙{o ∈ B},

proving the first statement of the theorem. The statement for q < qc is proved similarly.

We would like to obtain the final statement, concerning the critical case, by applying Theorem 4.3

to the family tree of W. However, there is a problem: the cluster 𝒞 cannot be recovered from the
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540 LIMA ET AL.

family tree of W. For instance, assume that W0 is the population consisting of a single individual of

type {o}, and W1 is the population consisting of a single individual of type {v}, where v is a vertex

with h(v) = k − 1 (so that v = (v1, … , vk−1), with v1, … , vk−1 ∈ [𝑑]). Then, 𝒞 ∩ {u ∶ h(u) ≤ k}
could be any of the sets

{o, (1, v1, … , vk−1)}, {o, (2, v1, … , vk−1)}, … , {o, (𝑑, v1, … , vk−1)}.

To solve this issue, we modify the process W slightly, by augmenting its set of types in order to encode

the information that is missing, so that the correspondence between realizations of its family tree and

realizations of 𝒞 becomes one-to-one.

To this end, first define the function f ∶ V → [𝑑] by defining f (o) arbitrarily (say, f (o) = 1), and

letting

f (v1, … , vn) = vn for any v = (v1, … , vn) ∈ V ⧵ {o}.

We then let ℬ̂ ∶=ℬ × [𝑑] and define the process Ŵ = (Ŵn)n≥0 with space of types ℬ̂ by letting

Ŵn((A, i)) ∶= |{v ∶ h(v) = n, S(v) = A, f (v) = i}|, A ∈ℬ, i ∈ [𝑑], n ∈ N0.

It should now be clear that Ŵ is a multitype branching process satisfying (35), and moreover there is

a natural bijection between 𝒞 and the trajectory (Ŵn)n≥0, so that (say) an individual of type (A, i) in

generation n of Ŵ can be associated to a unique vertex v ∈ V with h(v) = n and S(v) = A. Moreover,

exactly the same proof as that of Lemma 4.1 shows that the Perron–Frobenius eigenvalue �̂� of Ŵ
equals 1 when q = qc. As (35) ensures that we can apply Theorem 4.3 to Ŵ, we obtain the desired

result. ▪
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