Bayesian Learning in Mean Field Games - Université Paris Dauphine
Pré-Publication, Document De Travail Année : 2024

Bayesian Learning in Mean Field Games

Résumé

We consider a mean-field game model where the cost functions depend on a fixed parameter, called \textit{state}, which is unknown to players. Players learn about the state from a a stream of private signals they receive throughout the game. We derive a mean field system satisfied by the equilibrium payoff of the game and prove existence of a solution under standard regularity assumptions. Additionally, we establish the uniqueness of the solution when the cost function satisfies the monotonicity assumption of Lasry and Lions at each state.
Fichier principal
Vignette du fichier
MFG.pdf (186.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04568449 , version 1 (15-11-2024)

Identifiants

Citer

Eran Shmaya, Bruno Ziliotto. Bayesian Learning in Mean Field Games. 2024. ⟨hal-04568449⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

More