%0 Journal Article %T Asymptotic estimates for the wave functions of the Dirac-Coulomb operator and applications %+ Dipartimento di Matematica [Padova] %+ CEntre de REcherches en MAthématiques de la DEcision (CEREMADE) %+ Department of Mathematics, Beijing Institute of Technology %A Cacciafesta, Federico %A Séré, Éric %A Zhang, Junyong %< avec comité de lecture %@ 0360-5302 %J Communications in Partial Differential Equations %I Taylor & Francis %V 48 %N 3 %P 355-385 %8 2023-03-22 %D 2023 %Z 2101.07185v4 %R 10.1080/03605302.2023.2169938 %K Dirac-Coulomb equation %K Strichartz estimates %K steepest descent method %Z MSC 35Q41 %Z Mathematics [math]/Analysis of PDEs [math.AP] %Z Mathematics [math]/Mathematical Physics [math-ph]Journal articles %X In this paper we prove some uniform asymptotic estimates for confluent hypergeometric functions making use of the steepest-descent method. As an application, we obtain Strichartz estimates that are L2-averaged over angular direction for the massless Dirac-Coulomb equation in 3D. %G English %2 https://hal.science/hal-04045473/document %2 https://hal.science/hal-04045473/file/Dirac_Coulomb_estimates_via_saddle_point.pdf %L hal-04045473 %U https://hal.science/hal-04045473 %~ CNRS %~ UNIV-DAUPHINE %~ INSMI %~ CEREMADE %~ TDS-MACS %~ PSL %~ UNIV-DAUPHINE-PSL