Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results - Université Paris Dauphine Access content directly
Preprints, Working Papers, ... (Preprint) Year :

Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results

Abstract

We consider Gagliardo-Nirenberg inequalities on the sphere which interpolate between the Poincaré inequality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We establish explicit stability results in the subcritical regime using spectral decomposition techniques, and entropy and carré du champ methods applied to nonlinear diffusion flows.
Fichier principal
Vignette du fichier
BDS2022-Sphere.pdf (317.79 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03868496 , version 1 (23-11-2022)

Identifiers

  • HAL Id : hal-03868496 , version 1

Cite

Giovanni Brigati, Jean Dolbeault, Nikita Simonov. Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results. 2022. ⟨hal-03868496⟩
39 View
11 Download

Share

Gmail Facebook Twitter LinkedIn More